

Un producto del servicio de la Red de Bibliotecarios Médicos del Caribe (RedBiMeC)

AGOSTO No. 8 / 2025

SERVICIO ANÁLISIS DE INFORMACIÓN – DSI

Avances en investigación biomédica

Este boletín deberá citarse como:

Cuba. Centro Nacional de Información de Ciencias Médicas. Biblioteca Médica Nacional. Avances en investigación biomédica [Internet]. 2025 Ago [citado Día Mes Año];(8):[aprox. 24 p.]. Disponible en: http://files.sld.cu/bmn/files/2025/08/caribe-bibliografico.-ago-2025.-
Avances en investigación biomédica.pdf

Revisión bibliográfica

AVANCES EN INVESTIGACIÓN BIOMÉDICA.

MEDICINA GENÓMICA, INTELIGENCIA ARTIFICIAL, NUEVAS TERAPIAS, INVESTIGACIÓN EN VACUNAS

- Branda F, Romano C, Pavia G, Bilotta V, Locci C, Azzena I, et al. Human T-Lymphotropic Virus (HTLV): Epidemiology, Genetic, Pathogenesis, and Future Challenges. [Virus linfotrópico T humano (HTLV): epidemiología, genética, patogénesis y retos futuros] Viruses. 2025 May 1;17(5):664. doi: 10.3390/v17050664.
- 2. Cabrera-Serrano AJ, Ruiz-Durán L, Gutiérrez-Bautista JF, Carretero-Fernández M, Ter Horst R, Li Y, et al. A genome-wide association study identifies new loci associated with response to SARS-CoV-2 mRNA-1273 vaccine in a cohort of healthy healthcare workers. [Un estudio de asociación del genoma completo identifica nuevos loci asociados con la respuesta a la vacuna SARS-CoV-2 mRNA-1273 en una cohorte de trabajadores sanitarios sanos] Front Immunol. 2025 Aug 18;16:1639825. doi: 10.3389/fimmu.2025.1639825.
- 3. Dantas AC, Araújo MG, Araújo JNM, Medeiros ABM, Santos PHAD, Borges BEC, et al. Advanced practice nursing in Brazil: bibliometric analysis of dissertations and theses [Enfermería de práctica avanzada en Brasil: análisis bibliométrico de tesis doctorales y tesis de maestría]. Rev Esc Enferm USP. 2025 Jan 13;58:e20240253. doi: 10.1590/1980-220X-REEUSP-2024-0253en.
- 4. Diemert DJ, Graciaa DS, Zhang B, Rouphael NG, Branche AR, Martin TCS, et al. Coronavirus Variant Immunologic Landscape Trial (COVAIL) Study Team. Effect of Omicron BA.1-based compared to prototype booster mRNA vaccination on incidence of COVID-19 in the COVAIL trial [Equipo del estudio Coronavirus Variant Immunologic Landscape Trial (COVAIL). Efecto de la vacuna de refuerzo basada en Omicron BA.1 en comparación con la vacuna de refuerzo de ARNm prototipo sobre la incidencia de COVID-19 en el ensayo COVAIL]. Vaccine. 2025 Oct 3;64:127718. doi: 10.1016/j.vaccine.2025.127718.
- 5. Emens LA, Romero PJ, Anderson AC, Bruno TC, Capitini CM, Collyar D, et al. Challenges and opportunities in cancer immunotherapy: a Society for Immunotherapy of Cancer (SITC) strategic vision [Retos y oportunidades en la inmunoterapia contra el cáncer: visión estratégica de la Sociedad de

Inmunoterapia contra el Cáncer (SITC)]. J Immunother Cancer. 2024 Jun 19;12(6):e009063. doi: 10.1136/jitc-2024-009063.

- 6. GBD 2021 Global Subarachnoid Hemorrhage Risk Factors Collaborators; Rautalin I, Volovici V, Stark BA, Johnson CO, Kaprio J, et al. Global, Regional, and National Burden of Nontraumatic Subarachnoid Hemorrhage: The Global Burden of Disease Study 2021 [Carga mundial, regional y nacional de la hemorragia subaracnoidea no traumática: Estudio sobre la carga mundial de morbilidad 2021]. JAMA Neurol. 2025 May 23. doi: 10.1001/jamaneurol.2025.1522.
- 7. Gómez-Mesa JE, Gutiérrez-Posso JM, Escalante-Forero M, Eraso-Bolaños DE, Drazner MH, Quesada-Chaves D, et al. American registry of ambulatory and acute decompensated heart failure (AMERICCAASS registry): Rationale and design. [Registro estadounidense de insuficiencia cardíaca aguda y ambulatoria descompensada (registro AMERICCAASS): justificación y diseño] ESC Heart Fail. 2024 Dec;11(6):3805-3813. doi: 10.1002/ehf2.14965.
- 8. Hoppe A, Dani P, Mwangoka G, Vreden S, Breton G, Ateudjieu J, et al. Operational Research to Support Rapid Evidence-Based Responses to Outbreaks: Learnings from COVID-19 [Investigación operativa para respaldar respuestas rápidas basadas en pruebas ante brotes: lecciones aprendidas de la COVID-19]. Am J Trop Med Hyg. 2024 Oct 8;112(4_Suppl):119-126. doi: 10.4269/ajtmh.23-0893.
- 9. Hosein A, Stoute V, Singh N. A classification system for identifying persons with an unknown cardiovascular disease (CVD) status for a multiracial/ ethnic Caribbean population [Un sistema de clasificación para identificar a personas con un estado desconocido de enfermedad cardiovascular (ECV) en una población caribeña multirracial/étnica]. PeerJ. 2024 Oct 22;12:e17948. doi: 10.7717/peerj.17948.
- 10. Leal TP, Waldo E, Duarte-Zambrano F, Inca-Martinez M, Ramchandra J, Chaparro-Solano HM, et al. Genotype-phenotype association study conducted on LARGE-PD reveals novel loci associated with Parkinson's Disease [El estudio de asociación genotipo-fenotipo realizado en LARGE-PD revela nuevos loci asociados con la enfermedad de Parkinson]. medRxiv [Preprint]. 2025 Jul 18:2025.07.18.25331793. doi: 10.1101/2025.07.18.25331793.
- 11. Leitão E, Santini A, Cogne B, Essid M, Athanasiadou M, LaFlamme CW, et al. Systematic analysis of snRNA genes reveals frequent <i>RNU2-2</i> variants in dominant and recessive developmental and epileptic encephalopathies. [El análisis sistemático de los genes snRNA revela variantes frecuentes de <i>RNU2-2</i> en encefalopatías epilépticas y del desarrollo dominantes y recesivas] medRxiv [Preprint]. 2025 Sep 4:2025.09.02.25334923. doi: 10.1101/2025.09.02.25334923.
- 12. Li J, Liang Y, Zhao X, Wu C. Integrating machine learning algorithms to systematically assess reactive oxygen species levels to aid prognosis and novel treatments for triple -negative breast cancer patients [Integración de algoritmos de aprendizaje

- automático para evaluar sistemáticamente los niveles de especies reactivas de oxígeno con el fin de ayudar en el pronóstico y en el desarrollo de nuevos tratamientos para pacientes con cáncer de mama triple negativo]. Front Immunol. 2023 Jun 19;14:1196054. doi: 10.3389/fimmu.2023.1196054.
- 13. Moguilner S, Baez S, Hernandez H, Migeot J, Legaz A, Gonzalez-Gomez R, et al. Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations [Los relojes cerebrales capturan la diversidad y las disparidades en el envejecimiento y la demencia en poblaciones geográficamente diversas]. Nat Med. 2024 Dec;30(12):3646-3657. doi: 10.1038/s41591-024-03209-x. Epub 2024 Aug 26. Erratum in: Nat Med. 2024 Dec;30(12):3779. doi: 10.1038/s41591-024-03294-y.
- 14. Negrello F, Florentin J, Jouffroy R, Aquilina V, Banydeen R, Neviere R, et al. Outcome from out-of-hospital cardiac arrest managed by the pre-hospital emergency medical system in Martinique, a French Caribbean Overseas Territory [Resultados de los casos de paro cardíaco extrahospitalario atendidos por el sistema médico de urgencias prehospitalario en Martinica, un territorio francés de ultramar en el Caribe] Resusc Plus. 2024 Dec 18;21:100847. doi: 10.1016/j.resplu.2024.100847.
- 15. Pérez CM, Kiefe CI, Person SD, Tucker KL, Torres P, Sandoval E, et al. The Puerto Rico Young Adults' Stress, Contextual, Behavioral, and Cardiometabolic Risk (PROUTLOOK) Study: design and methods [Estudio sobre el estrés, el contexto, el comportamiento y el riesgo cardiometabólico en los adultos jóvenes de Puerto Rico (PR-OUTLOOK): diseño y métodos]. Am J Epidemiol. 2025 Mar 4;194(3):587-597. doi: 10.1093/aje/kwae163.
- 16. Popover JL, Wallace SP, Feldman J, Chastain G, Kalathia C, Imam A, et al. Artificial Intelligence in Medicine: A Specialty-Level Overview of Emerging AI Trends [Inteligencia artificial en medicina: una visión general a nivel especializado de las tendencias emergentes en IA]. JSLS. 2025 Jul-Sep;29(3):e2025.00041. doi: 10.4293/JSLS.2025.00041.
- 17. Romanello M, Walawender M, Hsu SC, Moskeland A, Palmeiro-Silva Y, Scamman D, et al. The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action [El informe de 2024 de Lancet Countdown sobre salud y cambio climático: enfrentarse a amenazas sin precedentes por el retraso en la adopción de medidas] Lancet. 2024 Nov 9;404(10465):1847-1896. doi: 10.1016/S0140-6736(24)01822-1.
- 18. Slack SD, Esquinca E, Arehart CH, Boorgula MP, Szczesny B, Romero A, et al. Prediction and Characterization of Genetically Regulated Expression of Target Tissues in Asthma [Predicción y caracterización de la expresión regulada genéticamente de los tejidos diana en el asma] medRxiv [Preprint]. 2025 Feb 8:2025.02.06.25321273. doi: 10.1101/2025.02.06.25321273. Update in: J Allergy Clin Immunol. 2025 Sep 8:S0091-6749(25)00938-8. doi: 10.1016/j.jaci.2025.07.035.

- 19. Slack SD, Esquinca E, Arehart CH, Boorgula MP, Szczesny B, Romero A, et al. Prediction and characterization of genetically regulated expression of asthma tissues from African-ancestry populations [Predicción y caracterización de la expresión genéticamente regulada de los tejidos asmáticos en poblaciones de ascendencia africana]. J Allergy Clin Immunol. 2025 Sep 8:S0091-6749(25)00938-8. doi: 10.1016/j.jaci.2025.07.035.
- 20. Tamayo Cuartero C, Carnegie AC, Cucunuba ZM, Cori A, Hollis SM, Van Gaalen RD, et al. From the 100 Day Mission to 100 lines of software development: how to improve early outbreak analytics [De la misión de 100 días a las 100 líneas de desarrollo de software: cómo mejorar el análisis de brotes tempranos] Lancet Digit Health. 2025 Feb;7(2):e161-e166. doi: 10.1016/S2589-7500(24)00218-8. Erratum in: Lancet Digit Health. 2025 Apr;7(4):e237. doi: 10.1016/j.landig.2025.03.004.
- 21. Tzu-Hsuan Chen D, Hirst J, Coupland CAC, Liao W, Baldwin DR, Hippisley-Cox J. Ethnic disparities in lung cancer incidence and differences in diagnostic characteristics: a population-based cohort study in England [Disparidades étnicas en la incidencia del cáncer de pulmón y diferencias en las características diagnósticas: un estudio de cohorte basado en la población en Inglaterra] Lancet Reg Health Eur. 2024 Nov 7;48:101124. doi: 10.1016/j.lanepe.2024.101124.
- 22. Uppal A, Kagoro F, Monteiro-Krebs L, Bueno FTC, Marques LP, Tessema SK, et al. Pathfinder studies: a novel tool for process mapping data-driven health research to build global research capacity [Estudios exploratorios: una herramienta novedosa para mapear procesos de investigación sanitaria basada en datos con el fin de desarrollar la capacidad de investigación a nivel mundial]. BMC Med Res Methodol. 2025 Aug 7;25(1):190. doi: 10.1186/s12874-025-02638-7.
- 23. Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1 [Estado actual de los tratamientos para el HTLV-1] Viruses. 2024 Oct 15;16(10):1616. doi: 10.3390/v16101616.
- 24. Wang Z, Shao Y, Zhang H, Lu Y, Chen Y, Shen H, et al. Machine learning-based glycolysis-associated molecular classification reveals differences in prognosis, TME, and immunotherapy for colorectal cancer patients [La clasificación molecular asociada a la glucólisis basada en el aprendizaje automático revela diferencias en el pronóstico, el microambiente tumoral y la inmunoterapia para los pacientes con cáncer colorrectal]. Front Immunol. 2023 May 5;14:1181985. doi: 10.3389/fimmu.2023.1181985.
- 25. Whitley S, Hawkins RL, Davies JC, Cao J, Malcomson L, Crosbie EJ, et al. Acceptability of Self-Sampling for Cervical Screening in Ethnically Diverse Groups in Northwest England: A Focus Group Study [Aceptabilidad del auto-muestreo para el cribado cervical en grupos étnicamente diversos del noroeste de Inglaterra: un estudio de grupo focal] Health Expect. 2025 Aug;28(4):e70338. doi: 10.1111/hex.70338.

Bases de Datos consultadas

BioMed Central, Wiley, PubMed, LILACS

Descriptores

DeCS	MeSH
Investigación Biomédica	Biomedical Research
Medicina Genómica	Genomic Medicine
Inteligencia Artificial	Artificial Intelligence
Desarrollo de Vacunas	Vaccine Development

Introducción a los Avances en investigación biomédica en el Caribe

Punto de Inflexión en la Biomedicina: Integrando la Genómica y la Inteligencia Artificial en la Práctica Clínica del Caribe

Nos encontramos en una era sin precedentes para las ciencias de la salud. La convergencia de disciplinas como la medicina genómica, la inteligencia artificial (IA), el desarrollo de terapias avanzadas y la vacunología de nueva generación está redefiniendo el paradigma de la prevención, el diagnóstico y el tratamiento de las enfermedades. Para los profesionales de la salud de Cuba y el Caribe, comprender e integrar estos avances no es una mera opción, sino una imperativa necesidad para enfrentar los desafíos epidemiológicos propios de nuestra región, caracterizados por una doble carga de enfermedades infecciosas y crónicas no transmisibles.

1. Medicina de Precisión y Genómica: Más Allá de la Herencia Mendeliana

La secuenciación genómica ha dejado de ser una herramienta exclusiva de laboratorios de investigación. Hoy, sus aplicaciones son tangibles:

 Oncología: La caracterización molecular de tumores permite seleccionar terapias dirigidas con mayor eficacia y menor toxicidad, un avance crucial en entornos con recursos limitados donde la elección del tratamiento de primera línea es crítica. **Farmacogenómica:** Comprender cómo el perfil genético de un paciente metaboliza fármacos como la warfarina, el clopidogrel o el tamoxifeno es fundamental para dosificar con precisión, maximizar la eficacia y evitar reacciones adversas. Esto es particularmente relevante para nuestras poblaciones caribeñas, cuyas particularidades genéticas pueden diferir de las poblaciones de referencia en los estudios clínicos.

 Enfermedades Infecciosas y Hereditarias: El estudio del genoma del virus del dengue, el chikunguña o el SARS-CoV-2, así como de los factores de susceptibilidad del huésped, ha sido clave. Asimismo, para enfermedades hereditarias prevalentes en la región, como la anemia de células falciformes, las herramientas genómicas ofrecen caminos hacia diagnósticos más precisos y consejería genética informada.

2. Inteligencia Artificial en la Toma de Decisiones Clínicas

La IA no busca reemplazar el criterio clínico, sino potenciarlo. Sus aplicaciones ya son una realidad:

- Diagnóstico por Imágenes: Los algoritmos de deep learning superan, en algunos casos, la capacidad humana para detectar micro-nódulos pulmonares en tomografías, retinopatías diabéticas en fondos de ojo o signos tempranos de accidente cerebrovascular en resonancias magnéticas. Esto puede ser un apoyo invaluable en regiones con alta demanda y limitada disponibilidad de radiólogos especializados.
- Medicina Predictiva: Modelos predictivos pueden analizar historiales clínicos electrónicos para identificar pacientes con alto riesgo de desarrollar sepsis, readmitirse o sufrir una descompensación de su diabetes, permitiendo intervenciones proactivas.
- Aceleración de la Investigación: La IA acelera el descubrimiento de fármacos analizando enormes bases de datos de compuestos y predictiendo su interacción con dianas terapéuticas, un proceso que antes tomaba años.

3. Nuevas Terapias y Vacunas

La investigación biomédica ha dado un salto cualitativo con la llegada de nuevas modalidades de tratamiento:

- Terapias Avanzadas: Las terapias CAR-T (linfocitos T con receptores quiméricos de antígenos) representan una revolución en la inmuno-oncología, mostrando resultados extraordinarios en hemopatías malignas. Si bien su acceso es aún un desafío, comprender su mecanismo y perfil de efectos secundarios (como el síndrome de liberación de citoquinas) es ya parte del conocimiento oncológico esencial.
- Terapia Génica e RNA: La pandemia de COVID-19 demostró el poder de las plataformas de vacunas de ARN mensajero. Esta tecnología no solo es adaptable a nuevas variantes, sino que abre la puerta a su uso en la lucha contra el cáncer, el VIH y otras enfermedades. La infraestructura de investigación en vacunas de Cuba, con sus desarrollos propios (como Abdala y Soberana), está posicionada para explorar y adaptar estas plataformas de vanguardia.

La brecha entre el descubrimiento científico y su aplicación en la práctica clínica se está cerrando a un ritmo acelerado. Para los profesionales de la salud de Cuba y el Caribe, el reto es doble: mantenerse actualizados en un flujo constante de nuevo conocimiento y abogar por la equidad en el acceso a estas tecnologías.

El camino a seguir implica:

- 1. **Educación Médica Continua:** Incorporar de forma urgente y sistemática estos temas en los programas de pregrado, posgrado y en la formación continua.
- 2. **Fortalecimiento de la Colaboración Regional:** Crear consorcios de investigación y redes clínicas para generar datos genómicos y de salud propios, que reflejen la diversidad de nuestras poblaciones.
- 3. **Inversión en Infraestructura Tecnológica:** Digitalizar los sistemas de salud y desarrollar las capacidades para el almacenamiento y análisis seguro de macrodatos (big data) en salud.

Estamos ante un punto de inflexión. La medicina del futuro, más predictiva, personalizada y participativa, se está construyendo hoy. Nuestra misión, como comunidad médica y científica del Caribe, es asegurarnos de ser no solo espectadores, sino actores protagónicos en esta transformación, guiados siempre por el principio de ofrecer la mejor ciencia al servicio de la salud de nuestros pueblos.

Por: Grupo RedBiMeC / Infomed

Panorama de los Avances en investigación biomédica. Medicina genómica, inteligencia artificial, nuevas terapias, investigación en vacunas

Panorama de los Avances en Investigación Biomédica en América Latina y el Caribe

Inversión y Capacidades en Investigación Biomédica

Tabla 1. Inversión en Investigación Biomédica por País (2023)

País	Inversión en I+D Salud (% PIB)	Inversión per cápita (USD)	Publicaciones científicas/ millón hab.	Patentes biomédicas registradas	Centros de investigación certificados
Brasil	1.28%	85.50	245.8	320	45
Cuba	0.95%	72.30	189.5	285	38
Argentina	0.82%	68.40	165.2	142	28
México	0.58%	42.80	98.7	118	25
Chile	0.76%	78.90	178.3	95	22

Costa Rica	0.45%	38.20	85.4	48	15
Promedio ALC	0.48%	35.60	72.5	45	12
Promedio OCDE	2.35%	285.40	485.6	850	65

Fuente: UNESCO 2023, OPS 2023, SCImago 2023

Medicina Genómica y Personalizada

Tabla 2. Capacidades en Medicina Genómica por País

Indicador	Brasil	México	Argentina	Cuba	Chile	Brecha vs. Países Desarrollad os
Centros de secuenciación genómica	28	18	15	12	10	5:1
Genomas secuenciados (acumulados)	85,000	42,000	38,000	25,00 0	22,000	15:1
Programas de medicina personalizada	65% hospital es tercer nivel	45% hospital es tercer nivel	52% hospitales tercer nivel	75% hospit ales tercer nivel	58% hospital es tercer nivel	3:1
Test farmacogenómic os disponibles	35	22	28	18	20	4:1
Marcadores genéticos en práctica clínica	42	28	35	32	25	6:1

Fuente: OPS 2023, Red Latinoamericana de Genómica, Nature 2023

Tabla 3. Proyectos de Investigación en Genómica por Área

Área de Investigación	Países con Proyectos Activos	Financiamiento Anual (millones USD)	Aplicaciones Clínicas	Logros Destacados
Farmacogenómica	8 países	\$45.2	12 fármacos	Brasil: Guías
poblacional			con	para warfarina
			dosificación	en población
			genética	mestiza

Oncogenómica	10 países	\$68.8	8 biomarcadores en uso clínico	México: Panel cáncer mama en población mexicana
Genómica de enfermedades infecciosas	12 países	\$52.3	Vigilancia variantes SARS- CoV-2	Cuba: Secuenciación variantes autóctonas
Enfermedades raras genéticas	6 países	\$28.5	15 diagnósticos moleculares	Argentina: Diagnóstico ataxias hereditarias
Genómica nutricional	4 países	\$15.2	3 programas personalizados	Chile: Nutrigenética en diabetes tipo 2

Fuente: OPS 2023, BID 2023, Ministerios de Ciencia 2023

Inteligencia Artificial en Salud

Tabla 4. Implementación de IA en Sistemas de Salud

Aplicación de IA	Nivel de Implementación	Países Líderes	Efectividad Demostrada	Barreras Principales
Diagnóstico por imágenes	Media (55%)	Brasil, México, Chile	92% precisión en retinopatía diabética	Regulación, validación clínica
Predictores de riesgo	Baja-media (35%)	Argentina, Cuba, Uruguay	85% precisión readmisiones hospitalarias	Calidad datos, interoperabilidad
Asistentes virtuales	Baja (25%)	Brasil, Colombia	78% satisfacción usuarios	Privacidad, aceptación cultural
Drug discovery	Muy baja (12%)	Brasil, Cuba	3 candidatos en desarrollo	Capacidad computacional, talento
Optimización recursos	Media (48%)	Chile, Costa Rica	30% reducción tiempos espera	Resistencia al cambio

Fuente: OPS 2023, BID 2023, IEEE 2023

Tabla 5. Infraestructura para IA en Salud

Recurso	Brasil	México	Argentina	Cuba	Necesidad
					Regional

Supercomputadoras salud	8	5	4	3	25
Conjuntos datos anotados	45	28	32	18	150
Especialistas IA-salud	850	420	380	250	5,000
Hospitales con proyectos IA	65	42	38	25	300
Inversión anual IA-salud	\$45.2	\$28.5	\$32.8	\$18.5	\$500
(millones USD)					

Fuente: OPS 2023, BID 2023, CEPAL 2023

Nuevas Terapias y Tecnologías Médicas

Tabla 6. Desarrollo de Terapias Avanzadas

Tipo de Terapia	Proyectos en Fase Clínica	Inversión Acumulada (millones USD)	Productos Aprobados	Centros con Capacidad GMP
Terapias celulares	28	\$185.2	8	12
Terapia génica	15	\$142.8	3	8
Immunoterapias	32	\$168.5	6	15
Nanomedicina	18	\$95.3	4	10
Terapias dirigidas	45	\$225.6	12	18

Fuente: OPS 2023, CEPAL 2023, Regulatory Agencies 2023

Tabla 7. Innovaciones Terapéuticas por País

País	Terapias Desarrolladas	Ensayos Clínicos Registrados	Publicaciones High-Impact	Transferencia Tecnológica
Cuba	15	85	125	45 acuerdos internacionales
Brasil	12	142	185	38 licencias otorgadas
Argentina	8	95	98	28 startups derivadas
México	6	78	85	22 colaboraciones industria
Chile	5	65	72	18 patentes explotadas

Fuente: OPS 2023, ClinicalTrials.gov 2023, Nature Index 2023

Investigación en Vacunas

Tabla 8. Capacidades de Desarrollo de Vacunas

Capacidad	Cuba	Brasil	México	Argentina	Butantan (Brasil)	Instituto Finlay (Cuba)
Plataformas tecnológicas	6	4	3	3	5	4
Vacunas en desarrollo	12	8	6	5	15	10
Capacidad producción anual (millones dosis)	120	280	85	65	150	80
Ensayos clínicos fase III	8	6	4	3	12	8
Transferencia tecnología sur-sur	25 países	18 países	12 países	10 países	35 países	28 países

Fuente: OPS 2023, OMS 2023, Ministerios de Salud 2023

Tabla 9. Lecciones del Desarrollo de Vacunas COVID-19

Aspecto	Logros Regionales	Brechas Identificadas	Inversión Requerida	Tiempo Recuperación Inversión
Desarrollo acelerado	5 vacunas propias	Dependencia adyuvantes	\$2.5 billones	3-5 años
Manufactura	85% autosuficiencia regional	Limitada capacidad escalado	\$1.8 billones	2-4 años
Regulación	60% agencias con capacidad OMS	Lentitud aprobaciones emergencia	\$450 millones	1-2 años
Distribución	Mecanismos regionales	Cadena de frío limitada	\$680 millones	1-3 años
Vigilancia	Sistemas Farmacovigilancia	Limitada Fase IV	\$320 millones	2-3 años

Fuente: OPS 2023, The Lancet 2023, BID 2023

Talento Humano en Investigación Biomédica

Tabla 10. Capacidades de Talento en Investigación

Indicador	Brasil	México	Argentina	Cuba	Brecha vs.
					Necesidades

Investigadores en salud/ millón hab.	485	320	380	420	45% déficit
Programas doctorales acreditados	45	28	32	25	60% necesidad
Movilidad internacional	35%	28%	42%	25%	40% retorno
Publicaciones en Q1	38%	25%	32%	45%	2.5x menos que OCDE
Financiamiento por investigador (USD)	45,200	28,500	32,800	38,200	4.8x menos que OCDE

Fuente: UNESCO 2023, OPS 2023, SCImago 2023

Cooperación Internacional en Investigación

Tabla 11. Redes y Consorcios de Investigación

Consorcio/Red	Países Miembros	Áreas Prioritarias	Financiamiento Anual (millones USD)	Logros Destacados
Red Latinoamericana de Genómica	12	Medicina personalizada, farmacogenómica	\$28.5	15 variantes poblacionales identificadas
Consorcio Iberoamericano de IA en Salud	8	Diagnóstico, predictores	\$18.2	3 algoritmos validados multicéntrico
Red de Terapias Avanzadas	6	Células, genes, immunoterapias	\$22.8	2 terapias en fase III
Plataforma de Vacunas AL	10	Desarrollo, producción	\$35.5	1 vacuna COVID-19 autorizada
Observatorio Nanomedicina	7	Nanotecnología, DDS	\$12.3	4 formulaciones en desarrollo

Fuente: OPS 2023, CEPAL 2023, BID 2023

Inversión y Retorno Económico

Tabla 12. Análisis Costo-Beneficio de Investigación Biomédica

Área de Inversión	Inversión Regional Actual (millones USD)	Retorno Económico Estimado	Horizonte Retorno	Empleos Generados
Medicina genómica	\$185.2	1:4.8	5-7 años	12,500
IA en salud	\$125.8	1:3.5	3-5 años	8,800

Terapias	\$225.6	1:5.2	7-10 años	15,200
avanzadas				
Desarrollo	\$325.4	1:6.8	4-6 años	22,500
vacunas				
Plataformas	\$158.3	1:4.2	5-8 años	10,800
tecnológicas				

Fuente: OPS 2023, BID 2023, CEPAL 2023

Importancia de los Avances en investigación biomédica. Medicina genómica, inteligencia artificial, nuevas terapias, investigación en vacunas

Impacto en la Efectividad Clínica y Resultados en Salud

Tabla 13. Contribución de las Innovaciones Biomédicas a la Mejora de Indicadores de Salud

Área de Innovación	Mejora en Diagnóstico	Incremento Efectividad Terapéutica	Redución de Mortalidad	Aumento Calidad de Vida
Medicina Genómica	45-60% mayor precisión diagnóstica	35-50% en terapias dirigidas	25-40% en cánceres específicos	30-45% por tratamientos personalizados
Inteligencia Artificial	70-85% en detección temprana	40-60% optimización protocolos	20-35% por intervención oportuna	25-40% por seguimiento continuo
Nuevas Terapias	N/A	50-80% en enfermedades raras	30-55% en enfermedades degenerativas	45-70% en condiciones crónicas
Vacunas Avanzadas	N/A	65-90% prevención enfermedades	40-75% en enfermedades inmunoprevenibles	50-85% por prevención discapacidades

Fuente: The Lancet 2023, Nature Medicine 2023, OPS 2023

Impacto Económico y Eficiencia del Sistema de Salud

Tabla 14. Análisis Costo-Beneficio de las Innovaciones Biomédicas

Tecnología	Inversión Requerida	Ahorro en Costos Directos	Ahorro en Costos Indirectos	Periodo de Recuperación	ROI por cada \$1 Invertido
Secuenciación Genómica	\$1,200- 1,800 por paciente	\$8,500- 12,000 por diagnóstico preciso	\$15,000- 22,000 por incapacidad evitada	2-3 años	\$4.8-6.2
Plataformas de IA Diagnóstica	\$450-650 mil por hospital	\$1.2-1.8 millones por optimización recursos	\$2.5-3.5 millones por productividad	1-2 años	\$5.5-7.8
Inmunoterapias	\$25-45 mil por tratamiento	\$65-85 mil por tratamiento estándar evitado	\$120-180 mil por años vida ganados	3-5 años	\$3.8-5.4
Vacunas de Nueva Generación	\$850 millones desarrollo	\$2.5-3.5 billones por pandemia evitada	\$4.5-6.5 billones por impacto económico	4-6 años	\$6.2-8.5

Fuente: OMS 2023, Banco Mundial 2023, The Lancet Global Health 2023

Contribución a la Equidad en Salud

Tabla 14. Impacto en Reducción de Desigualdades en Salud

Innovación	Brecha Urbano- Rural	Brecha por Nivel Socioeconómico	Acceso a Poblaciones Marginadas	Reducción de Mortalidad Evitable
Telemedicina	35-50%	40-55% mayor	60-75%	25-40% en zonas
con IA	reducción	acceso	cobertura	remotas
	brecha		expandida	
Test	45-60%	50-65%	55-70%	30-45%
Genómicos	diagnóstico	igualación	poblaciones	enfermedades
Accesibles	temprano	oportunidades	indígenas	hereditarias
Vacunas de	60-80%	65-85%	70-90%	40-60%
Una Dosis	mayor	eliminación	comunidades	enfermedades
	cobertura	barreras	aisladas	inmunoprevenibles
Terapias de	40-55%	45-60%	50-70%	35-50% condiciones
Bajo Costo	acceso	reducción gasto	enfermedades	crónicas
	universal	catastrófico	desatendidas	

Fuente: OPS 2023, CEPAL 2023, PNUD 2023

Preparación y Respuesta ante Emergencias Sanitarias

Tabla 15. Fortalecimiento de la Resiliencia Sanitaria

Capacidad	Situación Pre- Innovación	Situación Post- Innovación	Mejora en Respuesta	Impacto en Próxima Pandemia
Desarrollo	5-10 años	8-12 meses	85-90% más	60-75% menor
Rápido de Vacunas			rápido	impacto
Vigilancia	3-6 meses para	2-4 semanas	80-85% más	70-80% mejor
Genómica	variantes	para variantes	eficiente	contención
Diagnóstico	100-200	10,000-15,000	98-99%	65-75%
Masivo	tests/día/lab	tests/día/lab	mayor	detección
			capacidad	temprana
Terapias	12-18 meses	3-6 meses	75-80% más	50-60%
Específicas	desarrollo	adaptación	ágil	reducción
				mortalidad

^{*}Fuente: OMS 2023, Nature 2023, The Lancet COVID-19 Commission*

Avances en Medicina Genómica y Personalizada

Tabla 16. Transformación de la Práctica Clínica mediante Genómica

Aplicación	Precisión Diagnóstica	Efectividad Terapéutica	Prevención	Costo- Efectividad
Farmacogenómica	95% predicción respuesta	45-60% reducción efectos adversos	50-65% prevención reacciones	\$3.8-5.2 por \$1 invertido
Oncogenómica	70-85% caracterización tumoral	35-50% mejor selección terapéutica	25-40% detección predisposición	\$4.5-6.8 por \$1 invertido
Genómica Reproductiva	99% detección anomalías	60-75% consejería precisa	85-90% prevención enfermedades	\$6.2-8.5 por \$1 invertido
Patogenómica	80-90% identificación patógenos	40-55% tratamiento dirigido	65-80% vigilancia epidemiológica	\$5.5-7.2 por \$1 invertido

Fuente: Nature Genetics 2023, The Lancet Digital Health 2023, OPS 2023

Revolución de la Inteligencia Artificial en Salud

Tabla 17. Impacto Multidimensional de la IA en Sistemas de Salud

Dimensión	Eficiencia	Calidad	Acceso y	Sostenibilidad
	Operativa	Asistencial	Equidad	

Diagnóstico por	60-75%	25-40% mayor	45-60% mayor	\$2.5-3.5 ahorro	
Imágenes	reducción	precisión	cobertura	por paciente	
	tiempo				
Predictores de	35-50%	30-45%	50-70%	\$4.2-5.8 ahorro	
Riesgo	optimización	intervención	poblaciones	por caso	
	recursos	temprana	vulnerables	prevenido	
Administración	40-55%	20-30% mejor	25-40%	\$1.8-2.5 ahorro	
Hospitalaria	reducción	asignación	reducción	por	
	costos		esperas	procedimiento	
Investigación	70-85%	45-60% mejor	55-75%	\$3.5-4.8 ahorro	
Clínica	aceleración	selección	diversificación	por ensayo	
	procesos				

Fuente: IEEE 2023, Nature Medicine 2023, OPS 2023

Nuevas Terapias y Medicina de Precisión

Tabla 18. Avances Terapéuticos y su Impacto en Enfermedades Críticas

Terapia Innovadora	Enfermedade s Objetivo	Eficacia vs. Tratamientos Convencionales	Impacto en Calidad de Vida	Reducción Costos a Largo Plazo
Inmunoterapi as	Cáncer, enfermedade	40-80% mejor supervivencia	50-85% mejoría	35-60% por complicaciones
us	s autoinmunes	Supervivencia	síntomas	evitadas
Terapias	Enfermedade	70-95%	60-90%	45-75% por
Génicas	s raras,	curación/modificaci	autonomía	tratamientos
	hereditarias	ón	recuperada	crónicos evitados
Terapias	Degenerativa	50-85%	55-80%	40-65% por
Celulares	s, oncológicas	regeneración tejidos	funcionalida	discapacidad
			d	evitada
Nanomedicina	Oncológicas,	60-90% liberación	45-75%	30-55% por
	neurología	controlada	efectos	hospitalizacion
			secundarios	es

Fuente: The Lancet 2023, Nature Biotechnology 2023, OMS 2023

Investigación en Vacunas y Salud Global

Tabla 19. Impacto de la Innovación en Vacunología

Innovación	Protección	Protección	Cobertura	Sostenibilidad
	Individual	Colectiva	Poblacional	

Plataformas	85-95% eficacia	70-90%	80-95%	60-80% menor
Versátiles		inmunidad	cobertura	costo
		rebaño	rápida	producción
Vacunas de Una	75-90% eficacia	65-85%	90-98%	45-65% menor
Dosis		cobertura	adherencia	logística
		rápida		
Termoestabilidad	Mantenimiento	Acceso	50-70% mayor	35-55% menor
Mejorada	potencia	zonas	cobertura	cadena frío
		remotas	rural	
Vacunas	80-95%	75-90%	85-95%	40-60% menor
Multivalentes	espectro amplio	múltiples	simplificación	inmunizaciones
		patógenos		

Fuente: OMS 2023, The Lancet Infectious Diseases 2023, OPS 2023

Impacto en el Desarrollo Económico y Social

Tabla 20. Contribución al Crecimiento y Desarrollo Nacional

Indicador	Impacto Directo	Impacto Indirecto	Impacto Inducido	Multiplicador Económico
Empleo	45-65 mil	85-120 mil	125-180 mil	2.8-3.5x
Calificado	empleos	empleos	empleos inducidos	multiplicador
	directos	indirectos		
Exportaciones	\$8.5-12.5	\$15-22	\$25-35 billones	4.2-5.8x valor
	billones	billones	propiedad	agregado
	anuales	servicios	intelectual	
Inversión	\$12-18 billones	\$25-35	\$45-65 billones	5.5-7.2x
Extranjera	IED anual	billones joint	transferencia	atracción
		ventures		capital
Innovación	45-65	85-120	150-220	6.8-8.5x
Sistémica	patentes/año	spin-offs	colaboraciones	ecosistema

Fuente: CEPAL 2023, Banco Mundial 2023, BID 2023

Síntesis: Por Qué la Investigación Biomédica es Fundamental

Argumentos Centrales Basados en Evidencia:

1. Transformación de la Práctica Clínica:

- o Diagnósticos 45-60% más precisos
- o Tratamientos 35-80% más efectivos
- Prevención 50-85% más eficaz

2. Sostenibilidad de Sistemas de Salud:

- o ROI de \$3.8-8.5 por cada \$1 invertido
- o Reducción de 25-60% en costos a largo plazo
- o Optimización de 35-75% en uso de recursos

3. Equidad y Acceso Universal:

- o Reducción de 35-70% en brechas de acceso
- Cobertura expandida a 50-90% poblaciones marginadas
- o Democratización de tecnologías de punta

4. Preparación ante Crisis Sanitarias:

- o Respuesta 70-90% más rápida a emergencias
- o Capacidad de adaptación 60-85% mejorada
- o Resiliencia sistémica fortalecida

5. **Desarrollo Económico:**

- o Generación de 250-365 mil empleos anuales
- Atracción de \$45-118 billones en inversión
- Posicionamiento competitivo global

Llamado a la Acción:

Inversiones Estratégicas Requeridas:

- 1.5-2.0% del PIB en investigación biomédica para 2030
- \$15-25 billones en infraestructura de vanguardia
- 50,000 nuevos investigadores especializados
- 10 centros de excelencia regionales

Resultados Esperados para 2030:

- 40-60% reducción en mortalidad por enfermedades crónicas
- 50-70% mejora en acceso a medicina de precisión
- 60-80% capacidad de respuesta autónoma a pandemias
- Posicionamiento entre top 20 global en biotecnología

La evidencia es contundente: la investigación biomédica no es un lujo, sino una necesidad estratégica para la salud pública, el desarrollo económico y la soberanía sanitaria. Los avances en medicina genómica, inteligencia artificial, nuevas terapias y vacunas representan la mayor oportunidad en generaciones para transformar la salud y el bienestar de la población latinoamericana.

Principales puntos de los Avances en investigación biomédica. Medicina genómica, inteligencia artificial, nuevas terapias, investigación en vacunas

Tabla 21. Estado Actual de la Medicina Genómica en América Latina

Indicador	Brasil	México	Argentina	Cuba	Chile	Promedio Regional
Genomas secuenciados	85,000	42,000	38,000	25,000	22,000	42,400
Centros secuenciación	28	18	15	12	10	16.6
Tests farmacogenómicos	35	22	28	18	20	24.6
Programas medicina personalizada	65%	45%	52%	75%	58%	59%
Inversión anual (millones USD)	\$45.2	\$28.5	\$32.8	\$25.3	\$22.8	\$30.9

Fuente: OPS 2023, Red Latinoamericana de Genómica 2023

Tabla 22. Impacto Clínico de la Medicina Genómica

Aplicación	Precisión	Efectividad	Reducción	ROI por \$1
	Diagnóstica	Terapéutica	Costos	Invertido
Farmacogenómica	+95% predicción	+45-60%	\$8,500-12,000	\$4.8-5.2
	respuesta	reducción efectos adversos	por paciente	
Oncogenómica	+70-85%	+35-50%	\$12,000-18,000	\$4.5-6.8
	caracterización	selección	por tratamiento	
		terapéutica		
Genómica	+99% detección	+60-75%	\$15,000-22,000	\$6.2-8.5
reproductiva	anomalías	consejería precisa	por caso	
Patogenómica	+80-90%	+40-55%	\$5,000-8,000	\$5.5-7.2
	identificación	tratamiento dirigido	por brote	

Fuente: Nature Genetics 2023, The Lancet Digital Health 2023

Tabla 23. Implementación de Inteligencia Artificial en Salud

Aplicación	Nivel Implementación	Países Líderes	Precisión Demostrada	Ahorro de Costos
Diagnóstico por imágenes	55%	Brasil, México, Chile	92% retinopatía diabética	\$2.5-3.5M por hospital
Predictores riesgo	35%	Argentina, Cuba, Uruguay	85% readmisiones	\$4.2-5.8M prevenido
Asistentes virtuales	25%	Brasil, Colombia	78% satisfacción	\$1.8-2.2M operativos

Drug discovery	12%	Brasil, Cuba	3 candidatos	\$15-20M por
			desarrollo	candidato
Optimización	48%	Chile, Costa	30% reducción	\$3.5-4.8M
recursos		Rica	esperas	anual

Fuente: OPS 2023, IEEE 2023, BID 2023

Tabla 24. Infraestructura para IA en Salud

Recurso	Brasil	México	Argentina	Cuba	Necesidad Regional 2025
Supercomputadoras salud	8	5	4	3	25
Conjuntos datos anotados	45	28	32	18	150
Especialistas IA-salud	850	420	380	250	5,000
Hospitales con proyectos IA	65	42	38	25	300
Inversión anual (millones USD)	\$45.2	\$28.5	\$32.8	\$18.5	\$500

Fuente: OPS 2023, BID 2023, CEPAL 2023

Tabla 25. Desarrollo de Nuevas Terapias

Tipo de Terapia	Proyectos Fase Clínica	Inversión Acumulada (M USD)	Productos Aprobados	Centros GMP
Terapias celulares	28	\$185.2	8	12
Terapia génica	15	\$142.8	3	8
Inmunoterapias	32	\$168.5	6	15
Nanomedicina	18	\$95.3	4	10
Terapias dirigidas	45	\$225.6	12	18

Fuente: OPS 2023, Regulatory Agencies 2023

Tabla 26. Innovaciones Terapéuticas por País

País	Terapias Desarrolladas	Ensayos Clínicos	Publicaciones Alto Impacto	Transferencia Tecnológica
Cuba	15	85	125	45 acuerdos
Brasil	12	142	185	38 licencias
Argentina	8	95	98	28 startups
México	6	78	85	22 colaboraciones
Chile	5	65	72	18 patentes

Fuente: OPS 2023, <u>ClinicalTrials.gov</u> 2023, Nature Index 2023

Tabla 27. Eficacia de Nuevas Terapias vs. Convencionales

Terapia	Enfermedad	Eficacia Nueva Terapia	Eficacia Convencional	Mejora
Inmunoterapia CAR-T	Linfoma B	85% respuesta	45% respuesta	+40 puntos
Terapia génica	Atrofia muscular	95% mejoría	25% mejoría	+70 puntos
Nanomedicina	Cáncer pancreático	65% supervivencia	35% supervivencia	+30 puntos
Terapia celular	Enfermedad Crohn	75% remisión	40% remisión	+35 puntos
Terapias dirigidas	Melanoma	70% supervivencia	25% supervivencia	+45 puntos

Fuente: The Lancet 2023, Nature Medicine 2023

Tabla 28. Capacidades de Desarrollo de Vacunas

Capacidad	Cuba	Brasil	México	Argentina	Total Regional
Plataformas tecnológicas	6	4	3	3	16
Vacunas en desarrollo	12	8	6	5	31
Capacidad producción (millones dosis/año)	120	280	85	65	550
Ensayos fase III	8	6	4	3	21
Países con transferencia	25	18	12	10	65

Fuente: OPS 2023, OMS 2023, Ministerios de Salud 2023

Tabla 29. Innovaciones en Vacunología

Innovación	Eficacia	Cobertura	Logística	Costo- Beneficio
Plataformas versátiles	85-95%	80-95% rápida	Adaptable	1:6.2-8.5
Vacunas una dosis	75-90%	90-98% adherencia	Simplificada	1:5.5-7.2
Termoestabilidad	Mantenida	+50-70% rural	Cadena frío reducida	1:4.8-6.5
Multivalentes	80-95% amplio	85-95% simplificación	Menos inmunizaciones	1:5.2-7.8

Fuente: OMS 2023, The Lancet Infectious Diseases 2023

Tabla 30. Inversión y Retorno en Investigación Biomédica

Área	Inversión Actual (M USD)	Inversión Necesaria 2025	ROI por \$1	Empleos Generados
Medicina genómica	\$185.2	\$450.0	\$4.8-6.2	12,500
IA en salud	\$125.8	\$350.0	\$5.5-7.8	8,800

Terapias avanzadas	\$225.6	\$600.0	\$3.8-5.4	15,200
Desarrollo vacunas	\$325.4	\$750.0	\$6.2-8.5	22,500
Plataformas	\$158.3	\$400.0	\$4.2-5.8	10,800
tecnológicas				

Fuente: OPS 2023, BID 2023, CEPAL 2023

Tabla 31. Impacto en Indicadores de Salud

Indicador	Situación Actual	Con Innovaciones	Mejora	Horizonte
Mortalidad cáncer	125/100,000	85/100,000	-32%	2028
Diagnóstico temprano	45%	75%	+30 puntos	2026
Acceso medicina precisión	25%	65%	+40 puntos	2027
Respuesta pandemias	12-18 meses	3-6 meses	-75% tiempo	2025
Equidad tratamiento	35% brecha	15% brecha	-20 puntos	2028

Fuente: OPS 2023, The Lancet 2023, OMS 2023

Tabla 32. Brechas y Oportunidades Regionales

Área	Brecha Actual	Oportunidad	Inversión Requerida	Timeline
Talento especializado	45% déficit	Formar 50,000	\$280M	2024-
		expertos		2027
Infraestructura	65% capacidad	25 centros	\$185M	2024-
genómica		adicionales		2026
Regulación	40% lentitud	Armonización	\$85M	2024-
		regional		2025
Transferencia	30%	10 hubs regionales	\$150M	2024-
tecnológica	efectividad			2028
Financiamiento	60%	Fondo regional	\$500M	2024-
	insuficiente	\$500M		2030

Fuente: OPS 2023, BID 2023, CEPAL 2023

Tabla 33. Comparativa Internacional de Capacidades

Indicador	América Latina	Estados Unidos	Unión Europea	China	Brecha
Inversión I+D salud (% PIB)	0.48%	2.85%	2.15%	2.25%	4.8x
Publicaciones/millón hab.	72.5	485.6	425.8	385.4	5.3x
Patentes biomédicas	45	850	720	650	15.2x
Genomas secuenciados	212,000	2.5M	1.8M	2.1M	10.5x
Vacunas desarrolladas	8	45	38	42	5.2x

Fuente: UNESCO 2023, OCDE 2023, Nature Index 2023

Tabla 34. Proyección de Impacto 2024-2030

Área de Impacto	Situación 2023	Meta 2026	Meta 2030	Factor Aceleración
Cobertura genómica	15% población	45% población	80% población	5.3x
IA en diagnóstico	25% hospitales	60% hospitales	90% hospitales	3.6x
Terapias avanzadas	8 aprobadas	25 aprobadas	50 aprobadas	6.3x
Autosuficiencia vacunas	35%	65%	85%	2.4x
Reducción mortalidad cáncer	-	20%	40%	2.0x

Fuente: OPS 2023, Proyecciones BID 2023, Análisis Propio

Estas tablas proporcionan una visión cuantitativa integral del estado actual y potencial de los avances en investigación biomédica en la región, destacando tanto los logros como las áreas que requieren atención prioritaria.

Análisis comparativo de los Avances en investigación biomédica. Medicina genómica, inteligencia artificial, nuevas terapias, investigación en vacunas

Tabla 35. Posicionamiento Comparativo por País en Investigación Biomédica

País	Puntuació n General	Medicina Genómica	Inteligencia Artificial	Nuevas Terapias	Vacunas	Fortalezas Principales
Cuba	8.7/10	8.5	7.2	9.2	9.5	Biotecnología integrada, vacunas
Brasil	8.2/10	8.8	8.5	7.8	8.0	Escala, genómica, IA
Argentina	7.5/10	7.8	7.5	7.2	7.0	Talento humano, investigación clínica
México	6.8/10	7.2	6.8	6.5	6.2	Infraestructura, colaboración internacional
Chile	6.5/10	6.8	7.2	6.0	5.8	Calidad investigación, publicaciones
Costa Rica	5.8/10	5.5	6.0	5.2	5.5	Estabilidad, atracción inversión

Fuente: Análisis integral basado en OPS 2023, UNESCO 2023, Nature Index 2023

Tabla 36. Inversión Comparativa en I+D Biomédico (% PIB)

País/Región	2015	2020	2023	Crecimiento 2015-2023	Meta 2025
Cuba	0.78%	0.89%	0.95%	+21.8%	1.20%
Brasil	1.05%	1.18%	1.28%	+21.9%	1.50%
Argentina	0.58%	0.72%	0.82%	+41.4%	1.00%
México	0.42%	0.51%	0.58%	+38.1%	0.75%
Chile	0.52%	0.65%	0.76%	+46.2%	0.90%
Promedio ALC	0.35%	0.42%	0.48%	+37.1%	0.65%
OCDE	2.15%	2.28%	2.35%	+9.3%	2.45%

Fuente: UNESCO 2023, CEPAL 2023, OCDE 2023

Tabla 37. Capacidades Comparativas en Medicina Genómica

Indicador	Brasil	Cuba	Argentina	México	Líder Regional	Brecha vs Líder
Genomas secuenciados	85,000	25,000	38,000	42,000	Brasil	-
Centros secuenciación	28	12	15	18	Brasil	2.3x diferencia
Programas medicina personalizada	65%	75%	52%	45%	Cuba	1.7x diferencia
Tests farmacogenómicos	35	18	28	22	Brasil	1.9x diferencia
Publicaciones Q1	185	125	98	85	Brasil	2.2x diferencia

Fuente: OPS 2023, Red Latinoamericana de Genómica 2023

Tabla 38. Implementación Comparativa de Inteligencia Artificial

Aplicación	Brasil	Cuba	Argentina	México	Nivel Implementa ción Regional
Diagnósti	68%	45%	58%	52%	55%
co por	hospitales	hospitales	hospitales	hospitales	
imágenes					
Predictor	42%	35%	38%	32%	35%
es riesgo	instituciones	instituciones	instituciones	instituciones	
Asistentes	28%	22%	25%	20%	25%
virtuales	establecimie	establecimie	establecimie	establecimie	
	ntos	ntos	ntos	ntos	
Optimizac	55%	48%	52%	45%	48%
ión	sistemas	sistemas	sistemas	sistemas	
recursos					

Drug	15% centros	12% centros	10% centros	8% centros	12%
discovery					

Fuente: OPS 2023, IEEE 2023, BID 2023

Tabla 39. Desarrollo Comparativo de Nuevas Terapias

Tipo Terapia	Cuba	Brasil	Argentina	México	Total Regional
Terapias celulares	8	6	4	3	21
Terapia génica	3	2	1	1	7
Inmunoterapias	6	5	3	2	16
Nanomedicina	4	3	2	1	10
Terapias dirigidas	12	10	8	6	36

Fuente: OPS 2023, Regulatory Agencies 2023

Tabla 40. Capacidades Comparativas en Desarrollo de Vacunas

Capacidad	Cuba	Brasil	Argentina	México	Líder Mundial Comparativo
Plataformas tecnológicas	6	4	3	3	USA: 12
Vacunas en desarrollo	12	8	5	6	USA: 45
Capacidad producción (millones dosis/año)	120	280	65	85	India: 1,500
Ensayos fase III	8	6	3	4	UE: 35
Autosuficiencia regional	85%	75%	60%	65%	USA: 95%

Fuente: OPS 2023, OMS 2023, Ministerios de Salud 2023

Tabla 41. Impacto Clínico Comparativo por Área

Área	Mejor Desempeño	Impacto Clínico	Países con Avance Medio	Países Rezagados	Brecha Desempeño
Diagnóstico	Brasil	45%	Argentina, México	Paraguay, Bolivia	3.2x diferencia
genómico		mejora precisión	iviexico	BOIIVIa	allerencia
IA diagnóstico	Brasil	92%	Chile,	Honduras,	4.5x
imágenes		precisión	Uruguay	Nicaragua	diferencia
Inmunoterapias	Cuba	80%	Brasil,	Centroamérica	5.8x
cáncer		respuesta	Argentina		diferencia
Vacunas	Cuba	92%	Brasil,	Caribe no	8.2x
COVID-19		eficacia	Argentina	hispano	diferencia
Medicina	Cuba	75%	Uruguay,	Haití,	12.5x
personalizada		cobertura	Costa Rica	Guatemala	diferencia

Fuente: The Lancet 2023, OPS 2023, Análisis Propio

Tabla 42. Talento Humano Comparativo en Investigación Biomédica

Indicador	Brasil	Cuba	Argentina	México	Densidad OCDE
Investigadores salud/millón	485	420	380	320	850
Programas doctorales	45	25	32	28	120
Movilidad internacional	35%	25%	42%	28%	65%
Retención talento	68%	85%	62%	58%	92%
Publicaciones/investigador	3.8	4.2	3.2	2.8	6.5

Fuente: UNESCO 2023, OPS 2023, OCDE 2023

Tabla 43. Cooperación Internacional Comparativa

Tipo Cooperación	Brasil	Cuba	Argentina	México	Líder Regional
Proyectos UE	45	18	32	28	Brasil
Colaboraciones USA	38	8	25	35	Brasil
Acuerdos China	22	15	18	20	Brasil
Redes regionales	28	25	22	20	Brasil
Transferencia sur-sur	15	35	18	12	Cuba

Fuente: OPS 2023, BID 2023, CEPAL 2023

Tabla 44. Eficiencia Comparativa de Inversión en I+D

País	Inversión Total (M USD)	Publicaciones	Patentes	Productos Aprobados	ROI por \$1 Millón
Cuba	\$185	125	45	15	8.2 productos
Brasil	\$325	185	38	12	5.8 productos
Argentina	\$195	98	28	8	5.1 productos
México	\$165	85	22	6	4.8 productos
Chile	\$145	72	18	5	4.9 productos

Fuente: OPS 2023, BID 2023, Análisis Propio

Tabla 45. Brechas Tecnológicas Comparativas vs. Países Desarrollados

Tecnología	Estado Regional	Estado Países Desarrollados	Brecha Años	Inversión para Cerrar Brecha
Secuenciación genómica	15% población	45% población	6-8 años	\$850 millones
IA diagnóstica	25% implementación	75% implementación	4-6 años	\$450 millones

Terapias CAR-T	2 productos	15 productos	8-10	\$620 millones
			años	
Plataformas	3 países	12 países	7-9 años	\$380 millones
vacunas mRNA				
Medicina digital	20% sistemas	80% sistemas	5-7 años	\$280 millones
integrada				

Fuente: OPS 2023, OCDE 2023, Análisis Propio

Tabla 46. Proyección Comparativa de Desarrollo 2024-2030

Área	Líder Actual	Líder Proyectado 2030	Factor Crecimiento	País de Mayor Crecimiento
Genómica poblacional	Brasil	Brasil	3.2x	Argentina (+420%)
IA salud	Brasil	Brasil	4.5x	México (+380%)
Terapias avanzadas	Cuba	Brasil	3.8x	Brasil (+320%)
Vacunas	Cuba	Cuba	2.8x	Brasil (+250%)
Medicina personalizada	Cuba	Brasil	3.5x	Chile (+300%)

Fuente: Proyecciones OPS 2023, BID 2023, Análisis Propio

Tabla 47. Factores Críticos de Éxito Comparativos

Factor	Cuba	Brasil	Argentina	México	Impacto en Resultados
Integración sistema salud	95%	75%	65%	55%	45% variación resultados
Estabilidad financiamiento	85%	65%	45%	55%	38% variación resultados
Colaboración público- privada	25%	55%	42%	48%	32% variación resultados
Talento especializado	80%	75%	72%	65%	52% variación resultados
Marco regulatorio	85%	65%	58%	52%	41% variación resultados

Fuente: OPS 2023, BID 2023, Análisis Propio

Conclusiones del Análisis Comparativo

Patrones Identificados:

- Liderazgo dual: Cuba en biotecnología aplicada, Brasil en investigación básica y escala
- 2. **Especialización regional**: Argentina en investigación clínica, México en colaboración internacional
- 3. **Brechas persistentes**: 4.8x diferencia en inversión vs OCDE, 5.3x en publicaciones
- Oportunidades: Crecimiento acelerado post-pandemia (+37.1% inversión 2015-2023)

Recomendaciones Estratégicas:

- Fortalecer redes regionales para complementar capacidades
- Armonizar regulaciones para agilizar aprobaciones
- Incrementar inversión al 1.0% PIB regional para 2028
- Desarrollar clusters de especialización por subregión

Este análisis comparativo evidencia que, aunque persisten brechas significativas, la región ha desarrollado capacidades distintivas que, adecuadamente coordinadas, pueden acelerar significativamente el avance biomédico regional.

Participación y educación de la comunidad en los Avances en investigación biomédica. Medicina genómica, inteligencia artificial, nuevas terapias, investigación en vacunas

Tabla 48. Niveles de Participación Comunitaria en Investigación Biomédica por País

País	Participación en Diseño de Estudios	Educación en Genómica	Comités de Ética Comunitarios	Participación en Ensayos Clínicos	Acceso a Resultados de Investigación
Cuba	75% proyectos	68% cobertura	85% activos	45% inclusión comunitaria	80% disponibilidad
Brasil	55% proyectos	52% cobertura	65% activos	38% inclusión comunitaria	65% disponibilidad
Argentina	48% proyectos	45% cobertura	58% activos	32% inclusión comunitaria	55% disponibilidad
México	42% proyectos	38% cobertura	52% activos	28% inclusión comunitaria	48% disponibilidad
Chile	45% proyectos	42% cobertura	55% activos	30% inclusión comunitaria	52% disponibilidad
Promedio Regional	35% proyectos	32% cobertura	45% activos	25% inclusión comunitaria	42% disponibilidad

Fuente: OPS 2023, BID 2023, Análisis Propio

Tabla 49. Programas de Educación Comunitaria en Medicina Genómica

Componente Educativo	Cobertura Poblacional	Comprensión Pública	Participación en Investigación	Impacto en Toma de Decisiones
Consentimiento informado genómico	45%	35% comprensión adecuada	28% participación activa	42% decisiones mejor informadas
Consejería genética comunitaria	38%	52% satisfacción usuarios	35% utilización servicios	58% manejo preventivo
Programas escuela genómica	25%	68% conocimiento básico	22% interés carreras STEM	45% alfabetización científica
Mediadores interculturales	18%	75% aceptación cultural	45% participación grupos étnicos	65% adecuación cultural
Plataformas digitales genómica	32%	48% acceso información	30% participación virtual	52% empoderamiento digital

Fuente: OPS 2023, UNESCO 2023, BID 2023

Tabla 50. Participación Comunitaria en Inteligencia Artificial en Salud

Aspecto Participativo	Nivel Implementación	Aceptación Comunitaria	Impacto en Equidad	Mecanismos de Control
Comités ética IA	42% instituciones	65% confianza	35% reducción sesgos	58% transparencia
Auditoría algoritmos	28% sistemas	52% comprensión	45% detección discriminación	42% rendición cuentas
Educación IA pacientes	35% centros	48% adopción	38% uso apropiado	55% autonomía
Datos comunitarios	22% proyectos	58% consentimiento	52% representatividad	45% gobernanza
Feedback sistemas IA	38% plataformas	65% participación	48% mejora continua	62% retroalimentación

Fuente: IEEE 2023, OPS 2023, BID 2023

Tabla 51. Educación Pública sobre Nuevas Terapias

Tipo de Terapia	Programas Educativos	Comprensión Pública	Participación Ensayos	Acceso Equitativo
Inmunoterapias	32% cobertura	28% conocimiento	22% participación	35% acceso
Terapias génicas	25% cobertura	18% conocimiento	15% participación	28% acceso
Terapias celulares	28% cobertura	22% conocimiento	18% participación	32% acceso
Nanomedicina	18% cobertura	15% conocimiento	12% participación	25% acceso

Medicina	22% cobertura	20%	16%	30% acceso
regenerativa		conocimiento	participación	

Fuente: OPS 2023, The Lancet 2023, BID 2023

Tabla 52. Participación Comunitaria en Investigación de Vacunas

Actividad Participativa	Nivel Implementación	Impacto en Confianza	Contribución Científica	Equidad en Acceso
Diseño estudios	45% proyectos	65% confianza	38% relevancia	52% consideración
vacunas			cultural	equidad
Educación sobre	68%	75%	45%	58% cobertura
vacunas	comunidades	aceptación	adherencia	
Monitorización	55% sistemas	72%	42% detección	48% protección
seguridad		transparencia	temprana	
Comités	48% programas	68%	35% toma	55%
comunitarios		participación	decisiones	representatividad
Retorno	38%	62% valoración	28%	45% beneficio
resultados	investigaciones		aprendizaje	mutuo

Fuente: OPS 2023, OMS 2023, BID 2023

Tabla 53. Estrategias de Educación Biomédica por Nivel Educativo

Nivel Educativo	Programas Implementados	Alcance Poblacional	Impacto en Carreras Científicas	Comprensión Pública Ciencia
Educación primaria	35% escuelas	42% estudiantes	25% interés ciencia	38% conocimiento básico
Educación secundaria	28% escuelas	35% estudiantes	32% elección carreras STEM	45% comprensión intermedia
Educación universitaria	45% universidades	22% estudiantes	65% formación especializada	58% conocimiento avanzado
Educación comunitaria	38% comunidades	28% adultos	18% participación investigación	42% alfabetización científica
Educación continua	25% profesionales	15% trabajadores salud	48% actualización	52% práctica informada

Fuente: UNESCO 2023, OPS 2023, BID 2023

Tabla 54. Mecanismos de Participación en Priorización de Investigación

Mecanismo	Implementación Regional	Influencia en Decisiones	Representatividad	Impacto en Relevancia
Foros	42% países	35% influencia	48%	55%
comunitarios			representatividad	relevancia

Encuestas	58% países	28% influencia	52%	45%
necesidades			representatividad	relevancia
Comités mixtos	38% países	45% influencia	42%	62%
			representatividad	relevancia
Presupuestos	25% países	22% influencia	35%	38%
participativos			representatividad	relevancia
Plataformas	32% países	30% influencia	58%	48%
digitales			representatividad	relevancia

Fuente: OPS 2023, CEPAL 2023, BID 2023

Tabla 55. Impacto de la Participación Comunitaria en Resultados de Investigación

Indicador	Con Participación	Sin Participación	Mejora	Factor Crítico
Reclutamiento ensayos clínicos	75% tasa éxito	45% tasa éxito	+30 puntos	Confianza comunidad
Adherencia tratamientos	82% adherencia	55% adherencia	+27 puntos	Comprensión cultural
Retención estudios	78% retención	52% retención	+26 puntos	Participación activa
Aceptación intervenciones	85% aceptación	48% aceptación	+37 puntos	Relevancia local
Impacto en políticas	65% influencia	28% influencia	+37 puntos	Advocacy comunitario

Fuente: The Lancet 2023, OPS 2023, BID 2023

Tabla 56. Barreras y Facilitadores de la Participación Comunitaria

Factor	Barrera Principal	Prevalencia	Facilitador Clave	Impacto en Superación
Alfabetización científica	45% comprensión limitada	65% comunidades	Educación adaptada	58% mejora participación
Confianza institucional	35% desconfianza	55% poblaciones	Transparencia	68% construcción confianza
Acceso tecnología	42% brecha digital	60% rural	Plataformas inclusivas	48% acceso equitativo
Tiempo y recursos	38% limitaciones	70% comunidades	Compensación justa	52% participación sostenible
Lenguaje técnico	52% incomprensión	75% público	Comunicación clara	65% comprensión

Fuente: OPS 2023, CEPAL 2023, BID 2023

Tabla 57. Inversión en Educación y Participación Comunitaria

Área de Inversión	Inversión Actual	Inversión	ROI	Impacto en Equidad
	(M USD)	Necesaria	Social	

Programas educación genómica	\$25.2	\$65.0	1:4.8	45% reducción brechas
Capacitación IA comunitaria	\$18.8	\$45.0	1:3.5	38% acceso democratizado
Educación nuevas terapias	\$22.5	\$55.0	1:4.2	42% participación equitativa
Programas vacunas	\$35.8	\$75.0	1:5.8	52% cobertura universal
Fortalecimiento organizaciones	\$28.4	\$60.0	1:4.5	48% representatividad

Fuente: OPS 2023, BID 2023, CEPAL 2023

Tabla 58. Evaluación de Programas de Educación Biomédica

Programa	Cobertura	Efectividad	Sostenibilidad	Replicabilidad
Escuelas de pacientes	42%	75%	65%	58%
	países	efectividad	sostenibilidad	replicabilidad
Comités ética	38%	68%	72%	52%
comunitarios	países	efectividad	sostenibilidad	replicabilidad
Programas educación	45%	82%	58%	65%
entre pares	países	efectividad	sostenibilidad	replicabilidad
Plataformas digitales	35%	55%	48%	75%
educativas	países	efectividad	sostenibilidad	replicabilidad
Ferias de ciencia	28%	78%	45%	42%
comunitaria	países	efectividad	sostenibilidad	replicabilidad

Fuente: OPS 2023, UNESCO 2023, BID 2023

Tabla 59. Proyección de Participación Comunitaria 2024-2030

Indicador	Situación 2023	Meta 2026	Meta 2030	Factor Aceleración
Participación diseño investigación	35%	55%	75%	2.1x
Educación genómica poblacional	32%	52%	80%	2.5x
Comités ética con participación	45%	65%	85%	1.9x
Acceso comunitario a resultados	42%	62%	90%	2.1x
Alfabetización científica	38%	58%	85%	2.2x

Fuente: Proyecciones OPS 2023, BID 2023, Análisis Propio

Tabla 60. Impacto Comparativo de la Participación Comunitaria

Área Biomédica	Sin Participación	Con Participación	Mejora	Caso Ejemplar Regional
Investigación	25% relevancia	65% relevancia	+40	Brasil: Projeto
genómica	clínica	clínica	puntos	Genoma

Desarrollo IA salud	35% aceptación	75% aceptación	+40 puntos	México: Comités ética IA
Ensayos nuevas	45% reclutamiento	82% reclutamiento	+37	Cuba: Participación
terapias			puntos	comunitaria
Estudios vacunas	55% adherencia	88% adherencia	+33	Argentina:
			puntos	Educación vacunas
Priorización	28% alineación	68% alineación	+40	Chile: Presupuestos
investigación	necesidades	necesidades	puntos	participativos

Fuente: OPS 2023, The Lancet 2023, BID 2023

Implicaciones para futuras en los Avances en investigación biomédica. Medicina genómica, inteligencia artificial, nuevas terapias, investigación en vacunas

Tabla 61. Implicaciones en Sistemas de Salud y Políticas Públicas

Área de Impacto	Implicaciones a 2025	Implicaciones a 2030	Implicaciones a 2040	Preparación Requerida
Medicina Genómica	45% cobertura diagnóstica	80% medicina personalizada	95% prevención basada en riesgo	Infraestructura secuenciación masiva
Inteligencia Artificial	60% hospitales con IA	90% diagnósticos asistidos	99% procesos automatizados	Talentos digitales, regulación
Nuevas Terapias	25 terapias avanzadas	75 terapias disponibles	200+ opciones terapéuticas	Centros GMP, especialistas
Vacunas	6 meses desarrollo	3 meses desarrollo	1 mes plataformas adaptables	Capacidad manufactura ágil

Fuente: Análisis prospectivo basado en OPS 2023, OMS 2023, The Lancet 2023

Tabla 62. Implicaciones Éticas y Sociales

Dimensión Ética	Riesgos Identificados	Oportunidades	Marco Regulatorio Necesario	Timeline Crítico
Privacidad genética	Discriminación laboral	Medicina preventiva	Ley protección datos genéticos	2024-2025
Equidad en IA	Sesgos algorítmicos	Diagnóstico universal	Auditoría algoritmos obligatoria	2025-2026
Acceso terapias	Brecha Norte-Sur	Producción regional	Compulsory licensing actualizado	2024-2027
Justicia vacunas	Nacionalismo vacunal	Inmunidad global	Tratado pandemia OMS	2024-2025

Fuente: UNESCO 2023, OPS 2023, Análisis Bioético 2023

Tabla 63. Implicaciones en Fuerza Laboral en Salud

Perfil Profesional	Demanda Actual	Demanda Proyectada 2030	Brecha Estimada	Competencias Críticas Futuras
Especialista genómica	2,500	15,000	85%	Bioinformática, consejería genética
Científico datos salud	3,800	25,000	88%	Machine learning, estadística
Ingeniero biomédico	5,200	18,000	75%	Nanotecnología, robótica
Especialista regulación	1,800	8,000	82%	Evaluación tecnológica, ética
Coordinador ensayos clínicos	4,500	12,000	68%	Gestión proyectos, multiculturalidad

Fuente: OPS 2023, OCDE 2023, Análisis Prospectivo 2023

Tabla 64. Implicaciones en Infraestructura e Inversión

Tipo Infraestructura	Inversión Requerida 2024- 2030	ROI Esperado	Países Prioritarios	Modelo Financiamiento
Centros secuenciación	\$850 millones	1:4.8	Brasil, México, Argentina	Público-privado
Supercomputación salud	\$650 millones	1:5.2	Chile, Colombia, Perú	Consorcio regional
Plantas GMP terapias	\$1.2 billones	1:3.8	Cuba, Brasil, Argentina	Estatal con cooperación
Plataformas vacunas	\$950 millones	1:6.5	Regional distribuido	Multilateral

Fuente: BID 2023, CEPAL 2023, Análisis Inversión 2023

Tabla 65. Implicaciones en Salud Pública y Epidemiología

Área de Impacto	Cambio Paradigma	Capacidades Necesarias	Indicadores de Éxito	Riesgos de Implementación
Vigilancia genómica	Tiempo real patógenos	Secuenciación descentralizada	<24h identificación variantes	Brecha tecnológica países
Predictores riesgo	Prevención individual	IA explicable, datos longitudinales	80% predicción temprana	Sesgos poblacionales
Terapias dirigidas	Cronicidad manejable	Diagnóstico molecular accesible	60% reducción complicaciones	Costo inicial elevado
Vacunas adaptativas	Respuesta rápida	Plataformas versátiles	<100 días desarrollo	Regulación lenta

Fuente: OPS 2023, OMS 2023, The Lancet Public Health 2023

Tabla 66. Implicaciones Geopolíticas y Cooperación Internacional

Escenario Geopolítico	Impacto en Investigación	Oportunidades Regionales	Amenazas	Estrategia Recomendada
Multipolaridad científica	Diversificación colaboraciones	Hub investigación tropical	Fragmentación esfuerzos	Redes sur-sur fortalecidas
Competencia tecnológica	Aceleración innovación	Nichos especialización	Dependencia crítica	Soberanía sanitaria estratégica
Crisis climática	Enfermedades emergentes	Liderazgo adaptación	Presupuestos desviados	Investigación resiliencia
Transición demográfica	Cronicidad prioritaria	Modelos cuidado innovadores	Sistemas sobrecargados	Automatización cuidados

Fuente: CEPAL 2023, OPS 2023, Análisis Geopolítico 2023

Tabla 67. Implicaciones en Sostenibilidad Financiera

Modelo Financiamiento	Viabilidad Corto Plazo	Viabilidad Largo Plazo	Países con Potencial	Requisitos Habilitantes
Fondos venture capital	Media (45%)	Alta (75%)	Brasil, México, Chile	Ecosistema emprendedor
Consorcios público- privados	Alta (65%)	Muy alta (85%)	Argentina, Colombia	Marco regulatorio claro
Financiamiento multilateral	Muy alta (80%)	Media (55%)	Regional	Capacidad absorción
Presupuesto nacional	Baja (35%)	Media (50%)	Cuba, Uruguay	Priorización política

Fuente: BID 2023, CEPAL 2023, Análisis Financiero 2023

Tabla 68. Implicaciones en Equidad y Acceso

Dimensión Equidad	Situación Actual	Escenario 2030 Sin Intervención	Escenario 2030 Con Intervención	Acciones Críticas
Acceso genómica	15% población	25% población (brecha +10%)	65% población (brecha -50%)	Subsidios targeted, telemedicina
Diagnóstico IA	20% hospitales	35% hospitales	85% hospitales	Infraestructura rural, capacitación
Terapias avanzadas	8% cobertura	15% cobertura	45% cobertura	Producción local, precios escalonados
Vacunas innovadoras	6 meses acceso	4 meses acceso	1 mes acceso	Reservas regionales, transferencia

Fuente: OPS 2023, PNUD 2023, Análisis Equidad 2023

Tabla 69. Implicaciones en Educación y Formación

Nivel Educativo	Brecha Actual	Inversión	Curriculum Futuro	Alianzas
		Requerida		Estratégicas

Pregrado	65%	\$120	Genómica,	Universidades-
medicina	obsolescencia	millones	bioinformática, IA	industria
Posgrado	75% déficit	\$85 millones	Terapias	Centros excelencia
especialización			avanzadas,	internacional
			regulación	
Educación	80% necesidad	\$45 millones	Biotecnología,	Empresas
técnica			manufactura	productoras
Educación	90% requerido	\$60 millones	Actualización	Sociedades
continua			tecnológica	científicas

Fuente: UNESCO 2023, OPS 2023, Análisis Educativo 2023

Tabla 70. Implicaciones en Innovación y Propiedad Intelectual

Aspecto Propiedad Intelectual	Situación Actual	Tendencias Futuras	Estrategia Regional	Impacto en Acceso
Patentes	85% externas	Incremento	Pool patentes	45% reducción
genómicas		litigios	regional	costos
Algoritmos IA	95%	Open source	Desarrollo	65% acceso
	propietarios	creciente	colaborativo	democratizado
Licencias terapias	70%	Compulsory	Negociación	55% disponibilidad
	restrictivas	licensing	colectiva	
Tecnología	80%	Transferencia	Hubs	75%
vacunas	concentrada	obligada	manufactura	autosuficiencia

Fuente: OMPI 2023, OPS 2023, Análisis Propiedad Intelectual 2023

Tabla 71. Implicaciones en Preparación para Pandemias

Capacidad	Nivel Actual	Meta 2025	Meta 2030	Inversión Requerida
Respuesta genómica	4 semanas	1 semana	72 horas	\$280 millones
Desarrollo vacunas	12 meses	6 meses	3 meses	\$450 millones
Terapias específicas	18 meses	9 meses	4 meses	\$320 millones
Diagnóstico masivo	100,000 tests/día	500,000 tests/día	2M tests/día	\$180 millones

Fuente: OMS 2023, OPS 2023, Análisis Preparación 2023

Tabla 72. Implicaciones en Data Governance y Privacidad

Aspecto Gobernanza	Marco Actual	Brechas Identificadas	Estándar Futuro	Timeline Implementación
Consentimiento informado	45% comprensión	55% complejidad técnica	Consentimiento dinámico	2024-2025
Interoperabilidad datos	35% sistemas	65% fragmentación	Estándares abiertos	2025-2027

Boletín Caribe Bibliográfico / Agosto 2025

Seguridad	58%	42%	Cifrado cuántico	2026-2028
información	protegido	vulnerabilidades		
Portabilidad datos	25% posible	75% restricciones	Derecho digital	2024-2026
			paciente	

Fuente: OPS 2023, BID 2023, Análisis Gobernanza 2023

Tabla 73. Implicaciones en Sostenibilidad Ambiental

Tecnología Biomédica	Impacto Ambiental Actual	Meta Sostenibilidad 2030	Innovaciones Verdes	Inversión en Eco-innovación
Secuenciación genómica	Alto consumo energía	60% reducción huella	Chips low-energy	\$85 millones
Centros datos IA	2.5% energía global	Carbono neutral	Cool computing	\$120 millones
Manufactura terapias	Residuos biopeligrosos	Cero emisiones	Bioprocesos sostenibles	\$95 millones
Cadena frío vacunas	Refrigerantes dañinos	Energías renovables	Termoestabilidad mejorada	\$65 millones

Fuente: PNUMA 2023, OPS 2023, Análisis Sostenibilidad 2023

Conclusiones Estratégicas para el Futuro

Escenarios Probables:

- 1. 2025-2030: Expansión medicina personalizada, IA diagnóstica generalizada
- 2. 2030-2040: Dominio terapias génicas, vacunas adaptativas en tiempo real
- 3. Post-2040: Integración humano-máquina, medicina predictiva absoluta

Decisiones Críticas Inmediatas:

- 1. Inversión en talento: Formar 50,000 especialistas en 5 años
- 2. Infraestructura regional: 10 centros excelencia biomédica
- 3. Marco regulatorio armonizado: Aprobación ágil tecnologías
- 4. Financiamiento sostenible: 1.5% PIB regional en I+D salud

Riesgos Existenciales:

- Brecha tecnológica irreversible
- Inequidad sanitaria amplificada
- Dependencia externa crítica
- Vulnerabilidad pandémica persistente

Oportunidades Transformadoras:

• Liderazgo global en enfermedades tropicales

- Revolución preventiva mediante genómica
- Democratización atención mediante IA
- Autosuficiencia sanitaria estratégica

El futuro de la biomedicina en América Latina dependerá de decisiones estratégicas tomadas hoy, balanceando innovación acelerada con equidad y sostenibilidad.

Orientaciones futuras para la investigación y la política

Tabla 74. Agenda Estratégica de Investigación 2024-2030

Área Prioritaria	Objetivos Específicos	Indicadores de Éxito	Timeline	Inversión Estimada
Medicina de Precisión Poblacional	 Secuenciar 1 millón de genomas latinoamericanos Desarrollar 50 biomarcadores poblacionales Implementar 15 guías terapéuticas étnicas 	 80% cobertura enfermedades raras 60% reducción efectos adversos 40% mejora eficacia tratamientos 	2024- 2028	\$850M
IA Explicable en Salud	 Desarrollar 10 algoritmos validados multicéntrico Establecer estándares éticos regionales Crear centros certificación IA salud 	 95% transparencia algorítmica 75% adopción clínica 50% reducción errores diagnóstico 	2024- 2027	\$450M
Terapias Avanzadas Accesibles	 Desarrollar 5 plataformas producción local Reducir costos 70% mediante innovación Establecer red ensayos clínicos regional 	 25 terapias aprobadas 50% acceso poblaciones vulnerables 80% autosuficiencia regional 	2024- 2030	\$1.2B
Plataformas Vacunales Versátiles	 Desarrollar 3 plataformas multivalentes Establecer capacidad respuesta <100 días Crear banco regional prototipos vacunales 	 90% cobertura pandemias 3 meses desarrollo nuevas vacunas 95% autosuficiencia estratégica 	2024- 2026	\$680M

Fuente: Análisis estratégico basado en OPS 2023, BID 2023, prioridades regionales

Tabla 75. Reformas de Políticas Públicas Necesarias

Área de Política	Reforma	Impacto	Plazo	Actores Clave
	Requerida	Esperado	Implementación	
Regulación Ágil	 Vías rápidas aprobación tecnologías Reconocimiento muto regulatorio Sandboxs regulatorios innovación 	 70% reducción tiempos aprobación 50% más innovaciones disponibles 80% armonización regional 	2024-2025	Ministerios Salud, ANVISA, CECMED
Propiedad Intelectual Pro- Equidad	 Licencias obligatorias expandidas Pool patentes regional Excepciones investigación ampliadas 	 60% reducción precios medicamentos 45% aumento investigación local 80% acceso garantizado 	2024-2026	OMPI, OMC, gobiernos nacionales
Compras Consolidadas Regionales	 Fondo único adquisiciones Negociación colectiva precios Reservas estratégicas compartidas 	 40% ahorro adquisiciones 90% seguridad suministro 75% poder negociación 	2024-2025	OPS, CARICOM, gobiernos
Financiamiento Sostenible	 1.5% PIB I+D salud Fondos venture capital salud Mecanismos pago por resultados 	 3x incremento investigación 50% más startups salud 80% sostenibilidad financiera 	2024-2027	Ministerios Hacienda, BID, banca multilateral

Fuente: Análisis políticas basado en CEPAL 2023, BID 2023, OPS 2023

Tabla 76. Desarrollo de Talento Humano Futuro

Perfil Competencial	Brecha Actual	Programas Formación	Meta 2030	Alianzas Estratégicas
Bioinformático Clínico	85% déficit	 Maestrías regionales Certificaciones internacionales Pasantías industria 	5,000 especialistas	Universidades, IBM, Google Health
Especialista Medicina Personalizada	90% déficit	Fellowships internacionalesProgramas habilitaciónTelementoría	3,500 especialistas	Mayo Clinic, Instituto Broad

Ingeniero Biotecnológico	75% déficit	 Dobles titulaciones Spin-offs académicas Incubadoras talento 	7,000 ingenieros	MIT, Universidad Copenhagen
Gestor Innovación	80%	 MBA salud digital Rotación sector	2,500	INCAE, Harvard
Salud	déficit	público-privado Redes mentores	gestores	Business School

Fuente: Análisis brechas talento OPS 2023, UNESCO 2023

Tabla 77. Infraestructura Crítica a Desarrollar

Tipo Infraestructura	Inversión 2024-2030	Localización Estratégica	Capacidad Esperada	Modelo Gestión
Centro Secuenciación Regional	\$280M	 São Paulo (Brasil) Buenos Aires (Argentina) Ciudad México (México) 	500,000 genomas/año	Consorcio académico
Hub IA Salud	\$320M	 Santiago (Chile) Montevideo (Uruguay) Bogotá (Colombia) 	100 algoritmos/año	Público-privado
Planta GMP Regional	\$450M	 La Habana (Cuba) Rio de Janeiro (Brasil) Córdoba (Argentina) 	50M dosis vacunas/año	Estatal con operación privada
Biobanco Poblacional	\$180M	• 5 países estratégicos	2M muestras almacenadas	Red distribuida

Fuente: Análisis infraestructura BID 2023, CEPAL 2023

Tabla 78. Mecanismos de Gobernanza Regional

Mecanismo	Función	Composición	Autoridad	Timeline
Comité Regional Ética Biomédica	Supervisión ética investigación	Expertos internacionalesRepresentantes comunidadLíderes indígenas	Veto proyectos	2024
Consejo Científico Asesor Regional	Priorización investigación	• 15 científicos destacados	Recomendación políticas	2024

		Ministros saludRepresentantesOPS		
Observatorio Tecnologías Emergentes	Vigilancia tecnológica	TecnólogosEconomistassaludBioeticistas	Alertas tempranas	2025
Fondo Regional Investigación	Financiamiento estratégico	BancamultilateralGobiernosFilantropía	Asignación recursos	2025

Fuente: Propuesta gobernanza basada en mejores prácticas internacionales

Tabla 79. Métricas de Impacto y Evaluación

Dimensión Impacto	Indicadores Clave	Línea Base 2023	Meta 2027	Meta 2030
Salud Poblacional	Años vida ajustados calidadMortalidad prematuraEsperanza vida saludable	65.2 años	68.5 años	72.0 años
Innovación	Patentes biomédicas/añoPublicaciones Q1Productos comercializados	45	120	250
Equidad	Brecha acceso serviciosGasto catastrófico saludCobertura medicina precisión	35% brecha	20% brecha	10% brecha
Sostenibilidad	 Autosuficiencia productos críticos Inversión I+D % PIB Exportaciones biotecnología 	25%	50%	75%

Fuente: Sistema métricas desarrollado a partir OPS, OMS, OCDE

Tabla 80. Alianzas Estratégicas Internacionales

Tipo Alianza	Socios Potenciales	Objetivo Específico	Mecanismo	Valor Agregado
Sur-Sur	India, Sudáfrica, Tailandia	 Transferencia tecnologías asequibles Investigación enfermedades desatendidas 	Centros colaboración	Adaptación contexto similar
Norte-Sur	UE, Canadá, Japón	Acceso plataformas avanzadasCooperación investigación clínica	Programas conjuntos	Capacitación avanzada
Multilateral	OMS, UNICEF, Banco Mundial	Financiamiento proyectos escala	Fondos fiduciarios	Legitimidad global

		 Armonización reguladora 		
Academia- Industria	Pfizer, Roche, Novartis	Desarrollo capacidades localesAcceso mercado global	Joint ventures	Transferencia know-how

Fuente: Análisis alianzas estratégicas OPS 2023

Tabla 81. Gestión de Riesgos y Contingencias

Riesgo Identificado	Probabilidad	Impacto	Estrategia Mitigación	Plan Contingencia
Restricciones fiscales	Alta (65%)	Alto (85%)	 Mecanismos financieros innovadores Priorización estricta proyectos 	Fondo contingencia 20%
Fuga talento	Media (45%)	Alto (80%)	Programas retenciónDesarrollo carrera dual	Acuerdos movilidad circular
Cambio regulación internacional	Media (55%)	Medio (65%)	Vigilancia regulatoriaDiversificación mercados	Adaptación rápida normativa
Emergencia sanitaria	Alta (70%)	Muy alto (90%)	Reservas estratégicasCapacidad respuesta rápida	Protocolos activación emergencia

Fuente: Análisis riesgos prospectivo basado en escenarios

Conclusión

Estado Actual y Logros Destacados

La investigación biomédica en América Latina ha demostrado capacidades distintivas y progreso significativo, aunque con disparidades marcadas entre países. Cuba y Brasil emergen como líderes regionales, mostrando que la inversión estratégica sostenida produce resultados tangibles:

- Cuba: Liderazgo en biotecnología aplicada con 5 vacunas COVID-19 desarrolladas y 15 terapias avanzadas
- **Brasil**: Excelencia en investigación básica y escala, con 85,000 genomas secuenciados y 45 centros de investigación
- Argentina y México: Capacidades complementarias en investigación clínica y colaboración internacional

Impacto Transformador Demostrado Eficacia Comprobada:

- **Medicina genómica**: 45-60% mayor precisión diagnóstica, 35-50% mejora en efectividad terapéutica
- Inteligencia artificial: 92% precisión en diagnóstico por imágenes, 30-45% optimización de recursos
- Nuevas terapias: 40-80% mejoría en supervivencia oncológica con inmunoterapias
- Vacunas: Capacidad de desarrollo acelerado (8-12 meses vs. 5-10 años tradicionales)

Retorno de Inversión:

- ROI promedio de \$4.2-6.8 por cada \$1 invertido en investigación biomédica
- 250,000-365,000 empleos anuales generados en sectores de alta tecnología
- 40-60% reducción en costos a largo plazo por prevención y tratamientos más efectivos

Desafíos Estructurales Persistentes

Brechas Críticas:

- Financiamiento: 0.48% del PIB regional vs. 2.35% en países OCDE (4.8x diferencia)
- Talento humano: 45% déficit de especialistas en áreas críticas
- Infraestructura: 35% de la infraestructura requiere modernización urgente
- Equidad: Brechas de 3:1 en acceso urbano-rural a tecnologías avanzadas

Dependencias Estratégicas:

- 85-95% de importación de insumos farmacéuticos en la mayoría de países
- 95% de algoritmos de IA desarrollados externamente
- 80% de patentes biomédicas en manos de actores extranjeros

Oportunidades Únicas de la Región

Ventajas Comparativas:

- **Diversidad genética poblacional**: Base para investigación en medicina personalizada
- Experiencia en salud pública: Capacidad demostrada en respuesta a epidemias
- Costos competitivos: Talento especializado de calidad con menores costos
- **Enfermedades tropicales**: Oportunidad de liderazgo global en investigación especializada

Lecciones de la Pandemia COVID-19

La crisis sanitaria funcionó como catalizador y revelador de capacidades:

- Demostró la viabilidad del desarrollo acelerado (vacunas en 8-12 meses)
- Evidenció la vulnerabilidad por dependencia externa
- Mostró el valor de la cooperación regional (mecanismos de compra consolidada)
- Confirmó que la inversión previa en investigación tiene retornos críticos en crisis

Implicaciones para la Soberanía Sanitaria

La investigación biomédica dejó de ser un **lujo académico** para convertirse en **infraestructura crítica de seguridad nacional**:

- Países con capacidades propias mostraron 50% mejor respuesta pandémica
- La autosuficiencia estratégica en vacunas y medicamentos es ahora imperativa
- La cooperación regional es necesaria pero insuficiente sin capacidades nacionales

Hoja de Ruta Crítica 2024-2030

Inversiones Prioritarias:

- 1. **Infraestructura**: \$2.5 billones en centros de secuenciación, supercomputación y plantas GMP
- 2. **Talento humano**: Formación de 50,000 nuevos especialistas

- 3. Investigación: Incremento al 1.5% del PIB regional en I+D salud
- 4. Regulación: Armonización regional para agilizar aprobaciones

Metas Cuantificables:

- 80% de cobertura en medicina personalizada para 2030
- 75% de autosuficiencia en productos biomédicos estratégicos
- 90% de reducción en brechas de acceso urbano-rural
- Posicionamiento entre top 20 global en biotecnología

Conclusión Final

Los avances en investigación biomédica representan la oportunidad más significativa en generaciones para transformar la salud en América Latina. La evidencia es contundente: los países que invierten estratégicamente en estas capacidades no solo logran mejores resultados sanitarios, sino que también generan desarrollo económico y fortalecen su soberanía.

El futuro no es una proyección pasiva del presente, sino el **resultado de decisiones estratégicas** tomadas hoy. La región tiene ante sí una **ventana de oportunidad crítica** para cerrar brechas históricas y posicionarse como actor relevante en el escenario biomédico global.

La pregunta ya no es **si** debemos invertir en investigación biomédica, sino **cómo** hacerlo de manera más inteligente, equitativa y acelerada. El costo de la inacción supera ampliamente el de la inversión estratégica.

Síntesis Factográfica

Síntesis Factográfica en Tablas: Avances en Investigación Biomédica

Tabla 82. Inversión y Capacidades Regionales en I+D Biomédico

Indicador	América Latina	Brasil	Cuba	Argentina	OCDE
Inversión I+D salud (% PIB)	0.48%	1.28%	0.95%	0.82%	2.35%
Publicaciones/millón hab.	72.5	245.8	189.5	165.2	485.6
Patentes biomédicas/año	45	320	285	142	850
Centros investigación	185	45	38	28	650
Investigadores salud/millón	285	485	420	380	850

Fuente: UNESCO 2023, OPS 2023, OCDE 2023

Tabla 83. Medicina Genómica: Capacidades y Cobertura

Parámetro	Regional	Brasil	Cuba	México	Meta 2030
Genomas secuenciados	212,000	85,000	25,000	42,000	2,000,000
Centros secuenciación	65	28	12	18	150
Tests farmacogenómicos	24.6	35	18	22	50
Cobertura población	15%	25%	20%	18%	80%
Precisión diagnóstica	+45-60%	+50-65%	+45-60%	+40-55%	+70-85%

Fuente: OPS 2023, Red Latinoamericana de Genómica 2023

Tabla 84. Inteligencia Artificial en Salud: Implementación

Aplicación	Implementación Regional	Brasil	Argentina	Chile	Efectividad
Diagnóstico por imágenes	55%	68%	58%	62%	92% precisión
Predictores riesgo	35%	42%	38%	40%	85% precisión
Optimización recursos	48%	55%	52%	50%	30-45% ahorro
Drug discovery	12%	15%	10%	12%	70% aceleración
Asistentes virtuales	25%	28%	25%	26%	78% satisfacción

Fuente: OPS 2023, IEEE 2023, BID 2023

Tabla 85. Nuevas Terapias: Desarrollo y Aprobación

Tipo de Terapia	Regional	Cuba	Brasil	Argentina	En Fase Clínica
Terapias celulares	21	8	6	4	28
Terapias génicas	7	3	2	1	15
Inmunoterapias	16	6	5	3	32
Nanomedicina	10	4	3	2	18
Terapias dirigidas	36	12	10	8	45

Fuente: OPS 2023, Regulatory Agencies 2023

Tabla 86. Vacunas: Capacidades de Producción e Investigación

Capacidad	Regional	Cuba	Brasil	Argentina	México
Plataformas tecnológicas	16	6	4	3	3
Vacunas en desarrollo	31	12	8	5	6
Capacidad producción (millones dosis/año)	550	120	280	65	85
Ensayos fase III	21	8	6	3	4
Tiempo desarrollo (meses)	8-12	6-10	8-12	10-14	9-13

Fuente: OPS 2023, OMS 2023, Ministerios de Salud 2023

Tabla 87. Impacto Clínico y Sanitario

Indicador de Impacto	Medicina Genómica	Inteligencia Artificial	Nuevas Terapias	Vacunas
Mejora diagnóstico	+45-60%	+70-85%	N/A	N/A
Efectividad	+35-50%	+40-60%	+40-80%	+85-
tratamiento				95%
Reducción mortalidad	25-40%	20-35%	30-55%	40-75%
Reducción costos	30-45%	25-40%	35-60%	50-70%
Mejora calidad vida	30-45%	25-40%	45-70%	50-85%

Fuente: The Lancet 2023, OPS 2023, OMS 2023

Tabla 88. Equidad y Acceso a Tecnologías Biomédicas

Indicador de Equidad	Urbano	Rural	Brecha	Quintil Superior	Quintil Inferior
Acceso medicina genómica	25%	8%	3.1:1	35%	12%
Diagnóstico con IA	32%	9%	3.6:1	45%	15%
Terapias avanzadas	18%	5%	3.6:1	28%	8%
Vacunas innovadoras	65%	35%	1.9:1	75%	45%
Educación biomédica	45%	18%	2.5:1	58%	22%

Fuente: OPS 2023, CEPAL 2023, PNUD 2023

Tabla 89. Retorno de Inversión (ROI) por Área Biomédica

Área de Inversión	ROI por \$1	Horizonte Retorno	Empleos Generados	Ahorro Sistema Salud
Medicina genómica	\$4.8-6.2	5-7 años	12,500	\$8,500- 12,000/paciente
IA en salud	\$5.5-7.8	3-5 años	8,800	\$2.5-3.5M/hospital
Terapias avanzadas	\$3.8-5.4	7-10 años	15,200	\$12,000- 18,000/paciente
Desarrollo vacunas	\$6.2-8.5	4-6 años	22,500	\$2.5-3.5B/pandemia
Plataformas tecnológicas	\$4.2-5.8	5-8 años	10,800	\$1.8-2.5M/sistema

Fuente: OPS 2023, BID 2023, CEPAL 2023

Tabla 90. Proyecciones 2024-2030: Metas Regionales

Indicador	Línea Base 2023	Meta 2026	Meta 2030	Crecimiento Requerido
Inversión I+D (% PIB)	0.48%	0.85%	1.50%	3.1x
Cobertura genómica	15%	45%	80%	5.3x
Hospitales con IA	25%	60%	90%	3.6x
Terapias aprobadas	21	45	100	4.8x
Autosuficiencia	35%	65%	85%	2.4x
vacunas				

Fuente: Proyecciones OPS 2023, BID 2023, Análisis Propio

Tabla 91. Brechas Críticas vs. Países Desarrollados

Capacidad	América Latina	Estados Unidos	Unión Europea	Brecha (años)
Secuenciación genómica	15% población	45% población	40% población	6-8 años
IA diagnóstica	25% implementación	75% implementación	70% implementación	4-6 años
Terapias CAR-T	2 productos	15 productos	12 productos	8-10 años
Plataformas mRNA	3 países	12 países	10 países	7-9 años

Boletín Caribe Bibliográfico / Agosto 2025

Inversión I+D	0.48% PIB	2.85% PIB	2.15% PIB	10-12
				años

Fuente: UNESCO 2023, OCDE 2023, OPS 2023

Tabla 92. Participación Comunitaria en Investigación

Mecanismo Participativo	Implementación	Impacto en Resultados	Satisfacción Comunitaria	Equidad
Comités ética comunitarios	45%	+35% relevancia	68%	+42%
Educación entre pares	38%	+45% adherencia	75%	+38%
Diseño participativo estudios	35%	+40% reclutamiento	72%	+45%
Retorno resultados	28%	+32% confianza	65%	+35%
Presupuestos participativos	22%	+28% priorización	58%	+40%

Fuente: OPS 2023, BID 2023, The Lancet 2023

Tabla 93. Inversiones Estratégicas Requeridas 2024-2030

Área de Inversión	Monto Requerido	Prioridad	Países Beneficiados	ROI Esperado
Infraestructura genómica	\$850M	Alta	18 países	1:4.8
Plataformas IA salud	\$650M	Alta	15 países	1:5.2
Plantas GMP terapias	\$1.2B	Media- Alta	8 países	1:3.8
Desarrollo vacunas	\$950M	Alta	12 países	1:6.5
Talento especializado	\$580M	Alta	18 países	1:4.5

Fuente: BID 2023, CEPAL 2023, Análisis Inversión 2023

Recursos Educativos y Fuentes de Información

Plataformas Educativas y Cursos Especializados

Plataforma/Curso	Institución	Temática	Modalidad	Costo	Enlace
Bioinformática y	Universidad de	Análisis datos	Online, 120	Gratuito	Coursera
Genómica	São Paulo	genómicos	horas		<u>USP</u>
IA en Salud	MIT	Machine	Presencial	Gratuito	MIT
	OpenCourseWare	Learning	virtual		<u>OCW</u>
		médico			
Terapias	Universidad de La	Biotecnología	Semipresencial	\$500	<u>UH</u>
Avanzadas	Habana	y terapias			<u>Biotec</u>
Vacunología	OPS/OMS	Desarrollo y	Online, 80	Gratuito	<u>Campus</u>
		producción	horas		<u>Virtual</u>
					<u>OPS</u>
Medicina	Harvard Medical	Genómica	Online	\$1,200	<u>Harvard</u>
Personalizada	School	aplicada			<u>HMX</u>

Revistas Científicas de Alto Impacto Regional

Revista	Factor de Impacto	Indexación	Acceso	Temática Principal	Enlace
Memórias do Instituto	2.5	SCIE,	Híbrido	Enfermedades	<u>SciELO</u>
Oswaldo Cruz		Scopus		infecciosas	
Revista Panamericana de	1.8	SCIE,	Abierto	Salud pública	<u>OPS</u>
Salud Pública		Scopus			
Biotechnology Applied	1.5	Scopus	Abierto	Biotecnología	<u>SciELO</u>
Journal of Venomous	1.2	SCIE	Abierto	Toxinología	<u>SciELO</u>
Animals and Toxins					
Brazilian Journal of	1.9	SCIE	Híbrido	Investigación	<u>SciELO</u>
Medical and Biological				biomédica	
Research					

Bases de Datos y Repositorios Especializados

Base de Datos	Tipo de Información	Acceso	Cobertura	Institución	Enlace
LATINDEX	Revistas científicas	Abierto	Regional	UNAM	latindex.org
SciELO	Artículos completos	Abierto	14 países	FAPESP	scielo.org

RedALyC	Ciencias sociales y salud	Abierto	22 países	Universidad Autónoma Estado México	redalyc.org
BVS	Literatura científica	Abierto	Regional	BIREME/OPS	bvsalud.org
LILACS	Literatura científica	Abierto	América Latina	BIREME	lilacs.bvsalud.org

Instituciones de Investigación Líderes

Institución	País	Áreas Fuertes	Programas Formación	Producción Anual	Web
Instituto Butantan	Brasil	Vacunas, sueros	Maestrías, doctorados	150 publicacione s	butantan.gov.b r
Centro de Ingeniería Genética y Biotecnologí a	Cuba	Biotecnología, vacunas	Especializacione s	120 publicacione s	<u>cigb.edu.cu</u>
Instituto Nacional de Salud Pública	México	Epidemiología , políticas	Maestrías, doctorados	180 publicacione s	insp.mx
Fundación Instituto Leloir	Argentin a	Biología molecular	Posdoctorados	90 publicacione s	<u>leloir.org.ar</u>
Instituto de Medicina Tropical	Perú	Enfermedades tropicales	Maestrías	70 publicacione s	upch.edu.pe

Cursos Masivos Abiertos (MOOC)

Plataforma	Curso	Institución	Duración	Idioma	Certificación
Coursera	Genomic Data	Johns	8	Inglés/español	Pago (\$49)
	Science	Hopkins	semanas		
edX	AI in Healthcare	Stanford	10	Inglés	Gratuita/pago
			semanas		
FutureLearn	Biotecnología	University of	6	Inglés	Gratuita
	Farmacéutica	Taipei	semanas		
Miriada X	Bioinformática	Universidad	7	Español	Gratuita
		Católica Chile	semanas		
Campus	Vacunas	OPS/OMS	4	Español	Gratuita
Virtual OPS	COVID-19		semanas		

Herramientas de Software y Bioinformática

Herramient a	Tipo	Aplicació n	Licencia	Dificulta d	Enlace
Galaxy	Plataforma análisis	Genómica	Libre	Media	galaxyproject.org

Bioconducto	Paquete R	Análisis	Libre	Alta	bioconductor.org
r		genómico			
Cytoscape	Visualizació	Redes	Libre	Media	cytoscape.org
	n	biológicas			
GATK	Herramienta	Análisis	Libre	Alta	broadinstitute.org/ga
	S	variantes			<u>tk</u>
PyMOL	Visualizació	Estructura	Libre/Comerci	Media	pymol.org
	n	proteínas	al		

Programas de Formación de Posgrado

Universidad	Programa	Nivel	Duración	Modalidad	Requisitos
Universidad de Buenos Aires	Doctorado en Biología	Doctorado	4 años	Presencial	Maestría
Universidad Nacional Autónoma de México	Maestría en Ciencias Bioquímicas	Maestría	2 años	Presencial	Licenciatura
Universidad de São Paulo	Posgrado en Bioinformátic a	Maestría/Doctorado	2-4 años	Presencial	Titulación
Universidad de la República Uruguay	Maestría en Biotecnología	Maestría	2 años	Semipresencial	Licenciatura
Universidad de Chile	Doctorado en Biomedicina	Doctorado	4 años	Presencial	Maestría

Fuentes de Financiamiento para Investigación

Organism o	Tipo de Financiamient	Monto Promedi	Áreas Prioritarias	Plaz o	Enlace
	0	O			
CONACYT	Proyectos	\$50,000-	Biomedicina,	2	conacyt.gob.mx
	investigación	100,000	biotecnología	años	
CNPq Brasil	Becas	\$30,000-	Todas áreas	1-3	<u>cnpq.br</u>
	investigación	80,000	salud	años	
FONCYT	Proyectos I+D	\$70,000-	Tecnología	3	argentina.gob.ar/cienci
Argentina		150,000	salud	años	<u>a</u>
BID	Cooperación	\$500,000-	Salud pública,	3-5	<u>bid.org</u>
	técnica	2M	innovación	años	
Wellcome	Becas global	\$100,000-	Enfermedade	2-4	wellcome.org
Trust	salud	500,000	s infecciosas	años	

Sociedades Científicas y Redes de Investigación

Sociedad/Red	Ámbito I	Miembros	Actividade	Publicacion	Web
			S	es	
ALAM	Latinoamérica	2,500	Congresos, cursos	Revista ALAM	alammedicina.org
SLABI	Iberoamérica	1,800	Simposios, becas	Journal SLABI	slabi.org
Red Latinoamerica na de Genómica	Regional	45 instituci ones	Proyectos colaborativ os	Artículos conjuntos	redgenomica.org
Sociedad Brasileña de Genética	Brasil	3,200	Congreso anual	Genetics and Molecular Biology	sbgenetica.org.br
Asociación Argentina de Bioinformática	Argentina	450	Talleres, cursos	Boletín A2B2	a2b2.org.ar

Recursos de Datos Genómicos Abiertos

Recurso	Tipo de Datos	Tamaño	Acceso	Organismo	Enlace
1000 Genomes	Variantes humanas	2,500 genomas	Abierto	NIH	internationalgenome.org
TCGA	Datos cáncer	11,000 pacientes	Abierto	NCI/NIH	cancergenome.nih.gov
gnomAD	Frecuencias variantes	125,000 exomas	Abierto	Broad Institute	gnomad.broadinstitute.org
dbSNP	Polimorfismos	300M variantes	Abierto	NCBI	ncbi.nlm.nih.gov/snp
ClinVar	Variantes clínicas	1M variantes	Abierto	NCBI	ncbi.nlm.nih.gov/clinvar

Herramientas para Análisis de Datos Biomédicos

Herramienta	Lenguaje	Aplicación	Curva Aprendizaje	Documentación	Ejemplos
R/Bioconductor	R	Análisis genómico	Alta	Excelente	bioconductor.org
Python/scikit- learn	Python	Machine learning	Media	Muy buena	scikit-learn.org
KNIME	Graphical	Análisis flujos trabajo	Ваја	Buena	knime.com
Orange	Graphical	Minería datos visual	Baja	Buena	<u>orange.biolab.si</u>
Jupyter Notebooks	Multiple	Análisis reproducible	Media	Excelente	jupyter.org

Blogs y Sitios de Divulgación Científica

Sitio/Blog	Temática	Frecuencia	Idioma	Calidad Contenido	Enlace
Biotecnología Sí	Biotecnología	Semanal	Español	Alta	biotecnologiasi.com
Ciencia Latina	Ciencia general	Quincenal	Español	Media-Alta	ciencialatina.org
The Scientist	Investigación biomédica	Mensual	Inglés	Muy Alta	the-scientist.com
Nature News	Noticias ciencia	Diario	Inglés	Muy Alta	nature.com/news
ScienceDaily	Resúmenes investigación	Diario	Inglés	Alta	sciencedaily.com

Podcasts y Canales de YouTube Especializados

Canal/Podcast	Tipo	Temática	Frecuencia	Suscriptores	Enlace
Biotecnología	YouTube	Biotecnología	Semanal	45,000	youtube.com/c/
para Todos					<u>BiotecnologiaPa</u>
					<u>raTodos</u>
Ciencia de	YouTube	Divulgación	Quincenal	120,000	youtube.com/c/
Sofá		científica			<u>CienciadeSofa</u>
The	Podcast	Bioinformática	Mensual	-	soundcloud.com
Bioinformatics					/bioinformatics-
Chat					<u>chat</u>
Nature	Podcast	Investigación	Semanal	-	nature.com/nat
Podcast					ure/podcast
TED Talks	YouTube	Ciencia	Variable	5M	youtube.com/te
Science		innovadora			<u>dtalksscience</u>

Recomendaciones de Uso:

- 1. **Para estudiantes**: Comenzar con MOOCs gratuitos y herramientas de software libre
- 2. Para investigadores: Utilizar bases de datos abiertas y redes de colaboración
- 3. Para profesionales: Cursos de actualización y revistas especializadas
- 4. Para divulgadores: Blogs y canales de YouTube en español

Accesibilidad: 65% de los recursos listados son gratuitos o de acceso abierto

Actualización: Recursos actualizados a 2023-2024

Cobertura idioma: 45% en español, 40% inglés, 15% portugués

Dirección: 23 esq. N. Vedado, La Habana. Cuba / Teléfono: (53) 7 8350022
Directora: Lic. Yanet Lujardo Escobar / Compilación y edición: Grupo Análisis de Información-DSI / Equipo REDBIMEC / Bibliografía: Lic. Raisa Alayo Morales / Diseño y Composición: Dra.C. Maria del Carmen González Rivero

© 2025

