Monitoring Brain Function

In today’s anaesthesia, monitoring brain functions is of increasing concern to the anaesthesiologist. Over decades anaesthesiologists have been careful providers of safety for their patients. Attention was focused on haemodynamic stability, pulmonary function, metabolic balance and pain control. However, in the practical operation room settings, the brain seems to be merely a black box. But we have to understand, that to a certain extent we as anaesthesiologist are like gate keepers to our patient’s brain, protecting him from harmful effects of anaesthesia.

Brain functions in general can be monitored in the sense of blood flow, oxygen consumption, metabolic, nerve and electrical functions. Different monitors are therefore used for detection of hypoperfusion as in carotid endarterectomy, emboli detection, flow measurements as in neurosurgery, brain protection as in deep hypothermic circulatory arrest and severe head injury, drug control as in long term sedation in ICU or state of hypnosis in anaesthesia. Newly invented flow dependent devices as trans cranial doppler (TCD) are more diagnostic than long term monitoring devices. Somatosensory evoked potentials (SSEPs) have shown to be very useful in carotid surgery and spinal cord protection during thoracic aneurysm surgery requiring clamping, but they are also more of diagnostic value. Measurement of cerebral oximetry (INVOS) has certain technical limitations and has not proven to be very reliable or specific. From all these techniques only processed electro encephalogram (EEG) has come to the point of a continuous clinical monitor.

Intraoperative awareness

Our concept and understanding the depth of anaesthesia has changed dramatically since Guedel described the stages of anaesthesia. The semantically and logical questions rising with the term “awareness” as it is used by the anaesthesia community in contradiction to psychologists and memory researchers, leaves us with little hope for more clarity. We have to understand that awareness in general is not synonymous with consciousness and that memory is an ongoing process. Memory itself can basically be divided in to explicit (conscious) type and implicit (unconscious) type. To increase our confusion, commercially available monitoring systems are marketed to measure either “depth of anaesthesia”, “patient’s state of awareness” or “state of hypnosis”.

Although intraoperative awareness is a rare event, it concerns about 50% of all patients undergoing surgery. It is a major issue for those who have had previous episode of awareness. Patients can experience from unpleasant after effects as dreams, nightmares, anxiety, up to development of post traumatic distress syndromes.

Recalls or awareness situations are as old as the history of anaesthesia. The first reports of intraoperative awareness can be found in 1908 by Crile who reported the case of a woman who could describe her abdominal operation although it was done “under complete nitrous oxide and oxygen anaesthesia”. In 1950 Winterbottom published “Insufficient anaesthesia” in the British Medical Journal and innumerable publications followed. Most of the major textbooks, e.g. Cardiac Anaesthesia by Kaplan, describe that intraoperative awareness occurs only in 1% of the patients, whereas other authors report an incidence of up to 28%. The reported incidence depends on the type of anaesthesia, strength of stimuli, timing and persistence to elicit recall. Using an easy structured interview technique in 617 patients 12-48 hours after the operation, Dowd reported an incidence of 0–7%. In a large serie of patients in Finland, Ranta interviewed 2612 patients, the incidence was found to be 0.3 – 0.4% due to significant smaller doses of isoflurane and propofol. Other authors showed a difference when using interview techniques on the day of operation (smaller incidence) or when used on postoperative day 1–3 and 7–14 and found an incidence of 0.18 % in 11785 patients. In his editorial for Anesthesia&Analgesia Tempe states that only combined efforts by a group of anaesthesiologist, psychologist, and others will resolves some of the mysteries. The incidence of awareness should...
be reduced to as low a level as can be, because there is always a risk of posttraumatic neurosis.12

The widely accepted definition of anaesthesia is a combination of the state of hypnosis, analgesia, muscle relaxation and vegetative stability. Muscle relaxation and vegetative stability can be easily measured. Up to now analgesia is indirectly measured by vegetative response to surgical stimulus or by the MAC (minimal alveolar concentration) of drugs. Hypnosis in the light state (sedation) can be quantified by sedation scales as the Ramsay or the Modified Observer's/Assessment Scale. These scales are used in many studies, but cannot be used in anaesthesia, due to the lack of response to verbal commands. Besides, this approach provides only a subjective instantaneous assessment of the patients state.

Cardiac anaesthesia, however, is associated with a higher incidence of awareness, compared to other surgical procedures. Possible reasons for this are, the still widely used high opioid based techniques, the almost unpredictable pharmacodynamics of anaesthetics under the extracorporeal circulation especially in the rewarming period and at the time of cessation of bypass, interpersonal and interracial differences in drug reactions, haemodilution, and binding on foreign surface areas.13 The widely used clinical parameters such as pressure, rate, sweating and tears (PRST Score) within the course of anaesthesia, can not predict episodes of intraoperative awareness and have no scientific background.14

System Requirements

Commercially marketed systems should be rated against the description by Sebel for the effectiveness of measuring the depth of anaesthesia.15 This proposed classification enables us to compare monitor systems.

The ideal monitor should show:

1. A dose dependent relationship with different drugs used in anaesthesia.
2. Measure the depth of anaesthesia during induction as well as during emergence.
3. Detect intraoperative awareness situations.
4. Prevent over dosing and under dosing of anaesthetics.
5. Display malfunction of the system easily.

It should be kept strongly in mind that the scientific method used for the algorithm should be truly validated by a different and accepted scientific method. This algorithm should be published, so it can be critiqued and re-evaluated by different researchers. Reasons for new software releases should be explained freely.

As stated earlier the more clinical signs as the PRST Score16, the prevention of movements as used in the MAC concept as well as the isolated forearm technique17 cannot be used to detect either intraoperative awareness or measure the depth of anaesthesia. The main disadvantage in the use of these techniques is that they do not work on paralysed, beta blocked patients or in longer lasting procedures.

EEG

The realisation that the effects of anaesthetics may alter the EEG dates back to the discovery that the brain produces electrical activity. It was Caton in 1875 who, with the use of chloroform, convinced himself, that the waves he recorded from the brain were really of biologic origin.18 In the earlier 1930's, due to the knowledge of recording small voltages through the skull and the availability of electronic amplifiers, Berger showed the influence of chloroform on the EEG.19 In 1952 Faulcorner published the correlation between arterial ether concentration in oxygen and in oxygen/nitrous oxide and the depth of anaesthesia based on EEG patterns.20 Despite these early results, the recording of raw EEG signals in the operating room setting has had many disadvantages. It needed sophisticated knowledge of the neurologist for interpretation, it was time consuming and it distracted the anaesthesiologist's attention. Development of computerised processed EEG with conversion of EEG signals by means of Fast Fourier Transformation (FFT), that provides objective and reproducible information, has made it usable for continuous intraoperative monitoring.

The EEG can be considered to measure the depth of anaesthesia for several reasons. It represents cortical electrical activity derived from summed excitatory and inhibitory postsynaptic activity, which are controlled and paced by subcortical thalamic nuclei. Cerebral blood flow and cerebral metabolism are related to the degree of EEG activity.

Basically the EEG in the awake state shows high frequencies and low amplitudes. Most of anaesthetic drugs change the EEG in the same way, the frequency is reduced and the amplitude is increased. Lower doses of anaesthetics (level of sedation) lead to an increase in the median frequency, maximum strongest in the high frequencies Beta (β_1 and β_2) and to a decrease in the Alpha (α) waves. Increasing the dosage of anaesthetics (level of anaesthesia), a decrease in the median frequency and an increase in the amplitude can be seen. The EEG shows mostly Theta (θ) and Delta (δ) activity. The increase over this point will lead to burst suppression and then isoelectric EEG.21
Limitation of EEG monitoring is due to the reason that EEG is only able to show cortical alterations. From animal studies we know that variable damage either in patchy or variable degree is mostly seen in depth of the sulci or deeply located structures i.e. the putamen. Also minor changes of the EEG can be found due to alterations by cerebral metabolism (i.e. Isoflurane, Propofol), which is known to alter carbohydrate metabolism such that brain glucose and glycogen levels increase and lactic acid concentration decreases as well as due to change in temperature, PaCO₂ and mean arterial pressure.²²

Since the mid 1990's different types of so called “neuromonitors” as the bispectral index (BIS), median frequency (MF), auditory evoked potentials (AEP), 95% spectral edge frequency etc. have been introduced in to clinical practice. Most of them have been critiqued for their limitation of recording only 4 leads or even less, neglecting the fact of topographical feature of the brain. Further disadvantages are that either the mathematical algorithm has not been published, the validation has been done only on an anaesthetised population or the procedure is too complicated for clinical monitoring system.²³ Most of these systems also do not record a high quality of EEG due to the low output impedance amplifiers that are used.

Monitoring Systems Using the EEG

Spectral Analysis of the EEG

Since online raw EEG interpretation is meaningless, most monitor systems are using processed EEG with FFT. Earlier research with the MF and with the spectral edge frequency 95 (SEF 95) – frequencies where 50 % (MF) and 95 % (SEF 95) of the frequencies are below the power of the EEG, have not shown reliable results. SEF 95 and MF have had good correlation with increasing concentrations of volatile anaesthetics. In contradiction to the expectations, both parameters increased in the light state of anaesthesia, showing similar values as in the awake state. A decrease was found only later in deeper state of anaesthesia. Thus resulting in the same SEF 95 and MF values for the awake and light anaesthetised patient.²⁴²⁵

Power Spectrum Analysis of the EEG

Analysis of the EEG power spectrum for measuring the depth of anaesthesia is used in the PSM 2000, SomnoTrack and computer aided quantitative topographical electroencephalometry (CATEEM) (all Medisyst GmbH, Linden, Germany) and the EEG module M-EEG used in Datex-Ohmeda monitoring systems (System 5, Datex-Ohmeda, Helsinki, Finland). The pEEG (Drager AG, Luebeck, Germany) is no longer available.

1. CATEEM

The CATEEM describes the functional changes of the brain by automatic frequency analysis of all 99 (17 real and 82 virtual) electrode position using FFT. The current method (10:20 system), described in 1958, for placement of cortical recording electrodes divides each half of a cerebral hemisphere into quadrants measuring 10%, 20% and 20% of the hemispheric length to locate the position of the electrodes. The results are displayed in real-time, showing the absolute power density (µV²/Hz) of the real 17 electrodes and a quantitative topographical map using spectral colour scales within the map. The so called mirror mode visualises hemispheric asymmetries, comparing two electrodes to the middle axis. Thereby the more active electrode is reflected by a lighter area, whereas the less active electrode is darker. An automatic high artefact rejection is used as well as the high output impedance amplifier.

Using the CATEEM technology numerous studies in pharmacology research have shown that groups of drugs i.e. sedatives such as propofol and barbiturates increase the beta and alpha activity, whereas benzodiazepines decrease the alpha activity and with neuroleptics only an increase in alpha 1 but not alpha 2 can be found. Same results are shown for different other drugs, stating that drugs leave a “electrical fingerprint” in the brain.²⁶²⁷ CATEEM has been used to determine the effect of retrograde cerebral perfusion, in carotid endarterectomy, neurology, anaesthesia and sleep medicine.²⁸³⁴

Spectral Frequency Index (SFx)

In 1998 Dimpfel published the validation of an EEG derived SFx for continuous monitoring of sleep depth in humans.³⁵ The base for validation of the SFx is the comparison with the conventional sleep staging according to Rechtschaffen and Kales.³⁶ This staging is an international accepted six score system in sleep medicine, ranging from “awake” through “REM sleep” to “stage 4” reflecting deep sleep.

Background for the SFx is the knowledge about the correlation between biochemical transmitters and changes of frequency content of potentials. Three systems – the norepinephrine system, the glutamate system and the GABA ergic system control sleep. The net balance of these transmitters are reflected in the theta, beta 1 and beta 2 frequencies. Loss of norepinephrine control results in increase of theta activity, loss of glutamatergic control in an increase of beta 1 activity. Enforcement of GABA-ergic activity results in a decrease of beta 2 frequencies. The EEG derived formula of the absolute electrical power theta (θ) + beta 1 (β1) / beta 2 (β2) reflect the changes
found with the noradrenergic alpha 2-agonist medetomidine, which produce tremendous dose and time dependent specific increases in comparison to pre drug theta power. Together with the observation that other sedative drugs increase beta 1 power and that beta 2 power is decreased during human sleep, this formula is background for the SFx. Since then the SFx has been used in many studies for determination of sedation after coronary bypass surgery, induction and depth of anaesthesia with various anaesthesia regimens as sufentanil, propofol, balanced anaesthesia with fentanyl and inhalation agents. In 6 single blinded, randomised multicenter trials – including propofol, midazolam and opioids as reference drugs in comparison with a new drug, LK 544 (ethanolamin derivate), the SFx showed superior opioid as reference drugs in comparison with a new drug, LK 544 (ethanolamin derivate), the SFx showed superior quality. The SFx is scaled from 0 - 100% awake, where > 85 % is awake. The SFx follows temperature changes and also reflects zero line EEG under deep hypothermic circulatory arrest.

2. PSM 2000

The PSM 2000 is using the same technology as the CATEEM. It is a touch screen monitor, displaying the SFx as well as a hemisphere index. This index reflects the mirror mode as stated above. With the hemisphere index, hypoperfusion during cardiac procedures as well as in carotid surgery can be detected, keeping in mind that only cortical processes will be monitored.

3. Somnotrack

The Somnotrack with the so called Hypnax Technology is using 5 electrodes, positioned in an elastic, reusable EEG cap. Electrodes are using comparison between C3 (left) and C4 (right) hemisphere. The Hypnax is scaled from 0 to 100 %. According to the company suggestions a Hypnax of > 85% is awake, 70 – 80 % light sleep, 40-70 % deep sleep, < 40 % comatose. The Hypnax is a modified SFx, where evaluation still has to be done.

4. EEG-Modul M-EEG

This technology is only made for implementation into the Datex-Ohmeda Monitor system 5 (Datex Ohmeda, Finland). It uses a 4 channel EEG, which displays MF, SEF and burst suppression. It is also combined with AEP and BIS. A similar module using 4 channel EEG as well as BIS has been introduced to the market recently by Drager and Marquette (Drager, Germany) for use in their monitor systems Solar. Till now there is not much experience with this M-EEG module.

Personal clinical experience in cardiac anaesthesia as well as in studies over the last 3 years has shown that the system is easy to use, cost effective and reliable. To compare the costs between the BIS, hardware cost are comparable, where the single use probes of the BIS cost 18 EUR and the reusable EEG cap for about 500 recordings cost 150 EUR. This gives a single use cost factor off 0.3 EUR with the CATEEM or PSM 2000.

Non-linear, Chaotic Multivariant EEG

In contradiction to the linear EEG measurements with spectral or power analysis the technology used in BIS, Narkotrend, Entropy or the Patient State Index is based more on a chaotic approach. The details of the different mathematical formulae and technology cannot be discussed here.

1. BIS

The Bispectral Index (Aspect Medical Systems Inc. and SpaceLabs Medical Inc. USA) is based on a multivariant, statistical Analysis taking in to account the EEG, “Power” frequencies, bispectral analysis of the biocoherence, ß-activation, Quazi-suppression and burst suppression as well as so called hypnotic index. For details of the technology the reader is referred to the article by Rampil, but one has to keep in mind that the company never released the formula.39 Even if the BIS is the most studied device in the sense of hypnotic effect or as a monitor of awareness, the results are quite confusing. In comparing studies on the BIS it is important to take the software version in to consideration, i.e. the software 1.1 is using movements due to surgical stimulation, whereas the software 2.0 and higher is accounting loss of consciousness as well as intraoperative awareness. Except one large scaled multicenter study (300 patients) using the BIS software version 1.1. there are no large studies with the higher software versions, especially no studies are undertaken in cardiac surgery. BIS is a dimensionless number from 0 to 100. The exact definition when a patient is deeply asleep and is not endangered by awareness is still under debate. The major points of criticism are: additive anaesthetic and analgesic potency of nitrous oxide could not be measured,40 in Xenon anaesthesia verbal command were followed on a BIS < 50,41 ketamin as well as opioids are not reflected by the BIS,42-44 there being some case reports on intraoperative awareness even with a BIS of 47,46 and out of personal experience temperature changes are reflected poorly by the BIS. Out of studies with concepts of postoperative sedation, we know that the BIS only poorly reflected the state of sedation.47-50 All these points seem to show that BIS is not a totally reliable monitor for detecting awareness. Besides, the cost of the single use sensors with 18 EUR/piece is enormous compared with 0.3 EUR using...
a reusable EEG cap, which cost 150 EUR and can be used about 500 times. However, it should not be stated that this monitor is useless, it's the only marketed monitor with FDA approval but its limitations should be kept strongly in mind.

3. Entropy

The Entropy is a very new non-linear statistical parameter describing the order of chaotic data i.e. the EEG. Regarding the entropy, the EEG is not a summation of sinus waveforms but a chaotic, non-linear system. Algorithm used are the approximative entropy and the Shannon Entropy and the spectral entropy. Induction as well as emergence of anaesthesia could be detected by the spectral entropy as well as the approximative and the Shannon entropy. Published data of single centre and small number studies are available, they are promising but cannot be evaluated yet. A commercially available monitor is under construction by Datex-Ohmeda.

4. Patient State Analyzer

The PSA 4000 (Physiometrix, USA) is using a so called Patient State Index (PSI), based on a processed EEG and variable resolution electromagnetic tomography (VARETA) studies for evaluating the impact of anaesthetic agents on the various regions of the brain. The monitor has been introduced to the market in 2001 and has not yet been given the FDA approval. It is not available outside the USA. No large scale studies are yet published, but it seems to be a promising approach as it uses more than the frontal cortex information that is used by the BIS.

Auditory Evoked Potentials

The complex auditory evoked potential (AEP) have been studied in memory research as well as for measuring depth of anaesthesia. Mainly the midlatency potential (MAEP, 15-100 ms) are used for this purpose, they show a high intra and interindividual stability. Thornton et al described in a group of patients under halothane, etomidate and propofol anaesthesia that most of the anaesthetics increase the latency and decrease the amplitude in a dose dependent manner. Late latency auditory evoked potentials (LLAEP 100-1000 ms) are already in the awake state very variable and cannot be used for measuring the depth of anaesthesia.

1. AEP Monitor

The so called AEP monitor (Alaris Medical Systems, USA) is using a AEP index. This index is supposed to predict movement, response to verbal command, implicit and explicit memory. Due to certain mathematical calculations (ARX modelling) short latency of 2-6 sec can be displayed. A so called “A-line ARX Index” (AAI) is calculated from the MAEP, which is a dimensionless...
number from 100 – 0. The AAI from 100 – 60 is rated as awake, 60 – 40 sedation, 40 – 30 light anaesthesia and < 30 adequate anaesthesia. No major studies are yet published with these AAI.

Conclusions

Patients undergoing cardiac anaesthesia belong to a group which is highly susceptible to experience awareness. Monitors for detecting intraoperative awareness should be easy to use, reliable and cost effective. As highly qualified professionals in the medical field we should question our drive for even more simple monitors, in this way ending treating only numbers. Neuronomonitoring offers a vast field for research and anaesthesiologists should play a leading role due to our aim of delivering best care to the patients. Large scale multicentre studies should be conducted to compare different monitors as well as to find strategies to minimise the risk to our patients.

References

12. Tempe DK. In search of a reliable awareness monitor. *Anesth Analg* 2001; 92: 801-4
29. Dimpfel W. Dizocilpine (MK801), ketamine and phencyclidine: low doses affect brain field potentials in...
the freely moving rat in the same way as activation of
dopaminergic transmission. Psychopharmacology 1990; 101:
317-323
30. Schofer F, Dimpfel. Relation between psychometric test
and quantitative topographic EEG in pharmacology. Int J
31. Wozniak G, Dapper F, Zickmann B, Gehron J, Hehrlein
FW. Selective cerebral perfusion via innominate artery in
aortic arch replacement without deep hypothermic
circulatory arrest. Int J Angio 1999; 8: 50-56
32. Rolz L, Wolter S, Klee B, Schontube E. Possibilities of
classification of topographically distributed
neurophysiological multi-channel data. Int J Clin Monit
Comput 1996; 13: 27-34
H. EEG changes during sedation with gamma-
hydroxybutyric acid. Anaesthesist 1995; 44: 345-350
(German)
34. Entholzner E, Schneck HJ, Hargasser S, Hipp R, Tempel
G. Electroencephalographic demonstration of central
nervous system effects of different premedication
regimens. Anaesthesist 1994; 43: 431-440 (German)
35. Dimpfel W, Hofmann HC Schober F, Todorova A.
Validation of an EEG deprived spectral frequency index
(SFx) for continuous monitoring of sleep depth in humans.
36. Rechtschaffen A, Kales A. A manual of standardized
terminology, techniques and scoring system for sleep
stages of human subjects. D.C. 20014, DHEW Publication
No. (NIH) 204, U.S. Government Printing Office,
Washington 1968; 12p
37. Soltesz S, Silomon M, Biedler A, Kleinschmidt S, Benak J,
Molter GP. Gamma-hydroxybutyric acid ethanolamide
(LK544). The suitability of LK544 for sedation of patients
in intensive care in comparison with midazolam.
Anaesthesist 2001; 50: 323-328 (German)
38. Renz D, Dimpfel W, Schober F, Karlczek GF. Bedeutung
des Spektralen Frequenzindex (SFx) zur Quantifizierung
der Schlafstiefe während der Narkoseeinleitung. Acta
Anaesath Helvetica 1999; 2: 9-11
39. Rampill JJ. A primer for EEG signal processing in
anesthesia. Anesthesiology 1998; 89: 980-1002
40. Coste C, Guignard B, Mergaux C, Chauvin M. Nitrous
oxide prevents movement during orotracheal intubation
without affecting BIS value. Anesth Analg 2000; 91: 130-
135
the electroencephalogram does not predict responsiveness
to verbal command in patients emerging from xenon
42. Sakai T, Singh H, Mi WD, Kudo T, Matsuki A. The effect of
ketamine on clinical endpoints of hypnosis and EEG
variables during propofol infusion. Acta Anaesath Scand
1999; 43: 212-216
43. Suzuki M, Edmonds HL, Jr, Tsuede K, Malkani AL,
Roberts CS. Effect of ketamine on bispectral index and
44. Lehmann A, Zeitler C, Thaler E. Isgro F, Bold J.
Comparison of two different anesthesia regimens in
patients with aortoconary bypass grafting surgery:
sufentanil-midazolam and remifentanil-propofol. J
Cardiothorac Vasc Anesth 2000; 14: 416-420
45. Mychaskiv G, Horowitz M, Sachdev V, Heath BJ. Explicit
intraoperative recall at a bispectral index of 47. Anesth
Analg 2001; 92: 808-809
46. Guignard B, Chauvin M. Bispectral index increases and
decreases are not always signs of inadequate anesthesia.
Anesthesiology 2000; 92: 903
47. Lehmann A, Zeitler C, Thaler E. Isgro F, Bold J.
Comparison of two different anesthesia regimens in
patients with aortoconary bypass grafting surgery:
sufentanil-midazolam and remifentanil-propofol. J
Cardiothorac Vasc Anesth 2000; 14: 416-420
48. Walder B, Suter PM, Romand JA. Evaluation of two
processed EEG analyzers for assessment of sedation after
coronary artery bypass grafting. Intensive Care Med 2001;
27: 107-114
49. De Deyne C, Struys M, Decruyenaere J, Creulandt J,
Hoste E, Colardyn F. Use of continuous bispectral EEG
monitoring to assess depth of sedation in ICU patients.
Intensive Care Med 1998; 24: 1294-1298
50. De Deyne C, Struys M, Decruyenaere J, Creulandt J,
Hoste E, Colardyn F. Use of continuous bispectral EEG
monitoring to assess depth of sedation in ICU patients.
Intensive Care Med 1998; 24: 1294-1298
Thieme, Stuttgart, New York 1981 (German)
52. Bruhn J, Ropcke H, Hoefl A. Approximate entropy as an
electroencephalographic measure of anesthetic drug effect
during desflurane anesthesia. Anesthesiology 2000; 92:
715-726
53. Bruhn J, Lehmann LE, Roepcke H, Bouillon TW, Hoefl A.
Shannon entropy applied to the measurements of the
EEG effects of desflurane. Anesthesiology 2000; 93: A265
54. Viotro-Oja H, et al. Entropy of the EEG signal is a robust
index for depth of hypnosis. Anesthesiology 2000; 93:
A264
QEEG effects of anesthetics. Conscious and Cogn
2001; 10: 165-183
of halothane or enflurane with controlled ventilation on
auditory evoked potentials. Br J Anaesth 1984; 56:
315-323
57. Thorton C, Heneghan CP, Navaratnarajah M, Bateman
PE, Jones JG, et al. Effect of edomideate on the auditory
evoked response in man. Br J Anaesth 1985; 57:
554-561
58. Thorton C, Konieczko K, Jones JG, Jorden C, Dore CJ,
Heneghan CP. Effect of surgical stimulation on the
auditory evoked response Br J Anaesth 1988; 60:
373-378
59. Schwender D, Dawdermer M, Klausing S, Mulzer S,
Finsterer U, Peter K. Monitoring intraoperative
awareness. Vegetative signs, isolated forearm technique,
electroencephalogram, and acute evoked potentials.
Anästhesist 1996; 45: 708-721 (German)